YORK® Commercial & Industrial HVAC 2018 # A more comfortable, safe and sustainable world ### Take advantage of a broader range of capabilities Johnson Controls now provides a wider spectrum of innovative products, expert installation and services, and systems integration to help improve operational and energy outcomes for customers worldwide. ### HVAC EQUIPMENT Draw on the most comprehensive HVAC portfolio for commercial and residential buildings of all types, ages and sizes to enhance sustainability, energy use and the indoor environment. - · Chillers-air-cooled; water-cooled; connected - · Condensers and condensing units - Dedicated outdoor air systems (DOAS) - Duct-free mini-split systems - · Indoor packaged equipment and Rooftop units - · Variable refrigerant flow (VRF) systems #### **SECURITY** Help protect and enhance working and living environments today and tomorrow with integrated, customer-specific solutions from the world's leading security company. - · 24/7 remote monitoring - · Access control - · Advanced video surveillance - · Intrusion detection - · Managed services #### CONTROLS Equip facilities with intelligent HVAC controls to keep occupants comfortable, run equipment efficiently and optimize operating budgets. - Actuators - · Control panels - Control sensors - · Current sensors and transducers - Thermostats - Valves - · Variable speed drives #### FIRE, LIFE-SAFETY & HAZARD PROTECTION Help keep people and assets safe with comprehensive solutions, design, installation, service and monitoring from a world leading fire and life-safety systems provider. - · Fire alarm systems - · Fire sprinkler systems - · Fire suppression systems - · Mass notification systems - Special hazard solutions #### **OPTIMIZATION & RETROFIT SERVICES** Make the most of existing building and financial assets through costeffective upgrades, central plant strategies, and financing solutions. - · Central chiller plant optimization - · Clean energy assessments - · Energy performance contracts - · Energy retrofits - Equipment financing - Healthcare environment optimization - Public/private partnerships - · Technology refresh services - · Turnkey upgrades and retrofits #### LIGHTING CONTROLS & RETROFIT Save energy, minimize costs and meet organizational goals with a range of services, from business remodels, to new construction lighting design, to municipal street lights. - · Lighting retrofits - · Street and roadway lighting - · Turn-key lighting upgrades ### ENERGY STORAGE Rely on our innovative distributed energy storage products to better manage energy use, cut costs and ensure electrical back-up for a building, campus or enterprise. - · In-building distributed energy storage system - · Modular distributed energy storage system #### RETAIL SOLUTIONS Gain real-time insights into retail facilities, inventories, employees & customers to achieve maximum business performance in a digitally driven shopping world. - · Loss Prevention - Inventory Intelligence - · Traffic Insights ### OPERATIONAL INTELLIGENCE & LOSS PREVENTION Helps minimize costs, maximize operational performance and enhance return on investment in security programs with business intelligence solutions. - · Information management solutions - Real-time location systems (RTLS) for asset management - · Video and traffic analytics ### BUILDING SERVICES & PARTS Tap into resources of the industry's largest service network for HVAC, security and life-safety system installation and product support. More than 12,000 technicians working out of nearly 500 local offices can provide 24x7x365 proactive monitoring, remote and on-site service and repair, and replacement parts. - Aftermarket parts - · Building remote monitoring - Building system and HVAC repair - · Planned and preventive maintenance - · Predictive and diagnostic services - · Security and life-safety system repair #### **BUILDING AUTOMATION SYSTEMS** Connect commercial HVAC, lighting, security and protection systems on one platform. Vital data and insights improve efficiency, productivity, and occupants' comfort and safety. - Metasys® building automation system - Metasys Enterprise Optimization applications #### AIR SYSTEMS Use efficient air flow building-wide to create healthy, comfortable and visually appealing environments that increase work productivity and occupant satisfaction. - · Air handling units - · Air measuring - Chilled beams - Damners - EcoAdvance™ HVAC load reduction (HLR) module - · Energy recovery ventilators - · Fan and blower - Fans - Filtration - · Grilles and diffusers - · Heating coils and cooling coils - Louvers - Under floor air distribution - Unit ventilators - · Variable air volume (VAV) terminals - · Variable speed drives #### **BUILDING WIDE SYSTEMS INTEGRATION** Construct a smarter building by converging building, business/IT and specialty systems on an intelligent infrastructure. Let us streamline the process to measurably improve initial and lifecycle costs, enhance function, ensure connectivity and create an innovative, optimized, sustainable environment. ### Reference sites Our commitment to sustainability and energy efficiency dates back to 1885, with Warren Johnson's invention of the first electric room thermostat. Since then our focus has always been to increase a building's efficiency and operational performance. The following sites represent building solutions we have developed for our customers based on wide-ranging cross industrial experience in HVAC&R equipment, controls, fire and security systems, and services for commercial and industrial buildings. #### First building in Austria to be awarded a Green Building Certificate Johnson Controls Metasys® Building Automation System helps UNIQA Towers in Vienna achieve a Green Building Certificate for energy efficiency. #### The Gregor Mendel Institute State-of-the-art technologies for world-class research. #### Cisco. UK Smart+Connected Communities installation designed to save energy costs and improves performance. #### Fiserv (Europe) Ltd Utilising latest developments in chiller's technology delivers energy savings and ongoing cost reductions for Fiserv. #### THI GROUP Solutions for the hospitality industry. #### IBM Headquarters Adding value and conserving energy from the inside out. #### British Embassy. Berlin Full Lifecycle Solution for British Governement's first Private Finance Initiative outside the UK. #### Cologne Convention Center The centrifugal chillers and the building automation system are indispensable in creating and managing an optimal indoor environment. ### Catalogue content Page | Chillers & Heat Pumps | | |---|----| | AMICHI™ SERIES Modular air cooled scroll chiller / heat pump NEW | 12 | | YLHD Air to water scroll heat pump | 16 | | YCME / YHME Modular air cooled twin screw chiller / heat pump NEW | 20 | | YLAA Air-cooled scroll compressor chiller | 24 | | YLRA Air cooled heat pump scroll compressor | 28 | | YLPB Air cooled heat pump scroll compressor | 32 | | YVAA Air-cooled VSD screw chiller | 36 | | YVFA Air-cooled VSD screw chiller with integrated Free-cooling | 42 | | YMWA / YMRA Water-cooled cooling only, remote condenser and heat pump scroll compressor chiller | 48 | | YCSE / YCRE Style C Water-cooled or remote air-cooled screw compressor chiller | 50 | | YCWL / YCRL Water-cooled or remote air-cooled scroll compressor chiller | 52 | | YLCS Water-cooled or remote air-cooled screw compressor chiller | 58 | | YVWA Water-cooled VSD screw chiller | 64 | | YZ Magnetic bearing centrifugal chiller NEW | 68 | | YMC ² Water-cooled magnetic centrifugal chiller | 70 | | YK Water-cooled centrifugal chiller | 72 | | YHAU CL Single stage hot water driven absorption chiller | 74 | | YORK® Absorption chillers and heat pumps | 76 | | YIA Single stage hot water or steam powered absorption chiller | 78 | | WFC SC Single stage hot water absorption chiller / CH K & CH MG Natural gas-fired chiller/heaters | 80 | | Central Plant Optimization™ 10 | 82 | | Heat Pumps solutions | 84 | | Ecodesign Label Regulation | 88 | #### * AHRI CERTIFICATION PROGRAM YORK chillers have been tested and certified by Air–Conditioning, Heating and Refrigeration Institute (AHRI) in accordance with the latest edition of AHRI Standard 551/591 (S-I). Under this Certification Program, chillers are regularly tested in strict compliance with this Standard. This provides an independent, third-party verification of chiller performance. Refer to the AHRI site at: http://www.ahrinet.org/water_chilling+packages+using+vap or+compression+cycle+_water_cooled_.aspx for complete Program Scope, Inclusions, and Exclusions as some options listed herein fall outside the scope of the AHRI certification program. For verification of certification, go to the AHRI Directory at www.ahridirectory.org. Page | | Air Handling Systems & Terminal Devices | | |---|--|-----| | Ī | YMA Custom air handling units | 98 | | | YMB / YPS Modular Air Handling Units | 100 | | | YBV "Plug and Play" Air Handling Units | 102 | | | YTA Adiabatic Air Handling Unit | 106 | | Ì | YFCN Fan Coil Unit centrifugal fan | 110 | | Ī | YFCN-ECM Fan Coil Unit Inverter with centrifugal fan | 112 | | Ī | LASER & LOW BODY Fan Coil Units | 120 | | Ì | LASER ECM & LOW BODY ECM Fan Coil Units | 128 | | Ī | YEFB Hydro Blower | 130 | | | YHP-O High Static Pressure Blower | 134 | | Ī | YHK Hydro Cassette | 136 | | Ī | YHK ECM Inverter Hydro Cassette | 138 | | | YFCC Coanda Hydro Cassette | 142 | | Ì | YFCC-ECM Inverter Coanda Hydro Cassette | 144 | | | YHVP & YHVP-ECM Hydro High Wall | 148 | | | YEPR Heat Recovery Units NEW | 152 | | Ī | YORK® YC-P Series Close Control Air Conditioners | 156 | | Ī | YORK® YC-G Series Close Control Air Conditioners | 166 | | | YORK® YC-R Series Close Control Air Conditioners | 168 | |
| SmartPac - Factory Packaged Control | 170 | | | | | | | Rooftop Equipment | | | | ACTIVA Rooftop ARC-ARG-ARH-ARD 017 to 040 AB / BB | 178 | | i | ACTIVA Rooftop ARC-ARG-ARH-ARD 045 to 090 BB | 182 | | | Large ACTIVA Rooftop ARC-ARH 100 to 175 AB | 188 | | i | VITALITY Split Rooftop VIRSAC-VIRSAH 20 to 90 AB NEW | 194 | | | | | | | Comprehensive Solutions | | | | Industrial Refrigeration | 204 | | | Verasys [™] Configurable building controls system for smarter buildings | 214 | | | Metasys® Building Automation and Control Systems | 216 | | Ì | Metasys® Energy Dashboard | 218 | # Chillers & Heat Pumps SCROLL COMPRESSOR CHILLERS AND HEAT PUMPS SCREW COMPRESSOR CHILLERS AIR-COOLED & WATER-COOLED CENTRIFUGAL COMPRESSOR CHILLERS WATER-COOLED ABSORPTION CHILLERS AND HEAT PUMPS CENTRAL PLANT OPTIMISATION™ 10 ### AMICHI™ Series Air cooled Scroll DC Inverter chiller and heat pump YMAA 045 to 260 / YMPA 045 to 260 A complete range from 44 kW up to 255 kW #### **Exceeding Efficiency Standards** The YORK® Amichi™ Series Air-cooled DC Inverter Scroll Chiller and Heat Pump have been designed to meet tomorrow's efficiency standards today. Delivering performance beyond typical chiller and heat pump efficiency levels, the YORK® Amichi™ Series meets or exceeds stringent regulatory requirements (see chart, below) through an optimized combination of YORK® efficiency enhancing technologies. | ECODESIGN REGULATIONS CATEGORY: | EFFICIENCY METRIC: | TOMORROW'S STANDARDS MET TODAY: | |---------------------------------|--------------------|--| | Comfort Heating | SCOP/ηsh | Amichi™ Heat Pump: Sept. 2017 Compliant (Tier 2) | | Comfort Cooling | SEER/ŋsc | Amichi™ Chiller: Jan. 2021 Compliant (Tier 2) | | Process Cooling (Med. Temp.) | SEPR | Amichi™ Chiller: July 2018 Compliant (Tier 2) | | Process Cooling (High Temp.) | SEPR | Amichi™ Chiller: Jan. 2021 Compliant (Tier 2) | #### Performance Without Compromise The YORK® Amichi™ Series is a no-compromise solution for a variety of climates and locations. It can maintain efficiency in a variety of conditions without kits or add-ons (down to -18°C ambient in cooling mode and -15°C ambient in heating mode). With the smallest footprint across the widest capacity range on the market, the YORK® Amichi™ Series is also the perfect solution for high performance in smaller spaces. Our systems offer two levels of sound performance. If requirements call for sound attenuation beyond our standard lownoise levels, an optional Ultra Quiet Kit can further reduce sound power by 6 dBA, providing one of the quietest units available. #### A History of Reliability With the YORK® Amichi™ Series Air-cooled Scroll Chiller and Heat Pump, we're building on our legacy of cooling solutions and technology leadership. We don't judge success based on theoretical findings, but real-world experience. Our first generation modular chiller was built over a decade ago. We use DC inverter technology proven in over three decades of use. Our use of inverter scroll technology dates to 1985. And every new YORK® chiller is subjected to a Highly Accelerated Life Test(HALT) during the design product development stages, allowing us to simulate a variety of extreme conditions and ensuring long term operational reliability and quality. ### Air cooled Scroll DC Inverter chiller and heat pump YMAA 045 to 260 / YMPA 045 to 260 #### Technical features | Model | | | | | | Υ | MAA / YMF | PA | | | | |----------------|---------------------------------------|-------|--------------------------|-------|------------|--------------|-----------------|--------|--------------|----------------|-------| | Model | | | 45 | 65 | 80 | 100 | 130 | 160* | 200* | 230* | 260* | | | Cooling capacity c/o units | kW | 44 | 60 | 77 | 99 | 122 | 164 | 189 | 219 | 255 | | | EER | | 2.87 | 2.78 | 3.08 | 2.99 | 2.94 | 3 | 3 | 3 | 3 | | SEER | | | 4.30 4.21 4.35 4.37 4.33 | | | Mark Farder: | Dl-ti | | | | | | | ηs,c | | 169 | 166 | 171 | 172 | 170 | | Meet Ecodesi | gn Regulations | 5 | | Dawfaumanaa | Cooling capacity h/p units | kW | 44 | 60 | 77 | 99 | 122 | 164 | 189 | 219 | 255 | | Performance | Heating capacity h/p units | kW | 50 | 61 | 88 | 100 | 132 | 167 | 190 | 232 | 256 | | | COP | | 3.03 | 3.04 | 3.27 | 3.18 | 2.98 | 3,04 | 2,99 | 3,03 | 2,98 | | | SCOP | | 3.32 | 3.28 | 3.39 | 3.36 | 3.31 | | Mark Farder: | Dl-ti | _ | | | ηs,h | % | 130 | 128 | 133 | 131 | 129 | | Meet Ecodesi | gn Regulations | 5 | | | Sound power level STD / LN | dB(A) | 80/75 | 82/77 | 81/77 | 83/79 | 84/80 | 87/81 | 89/82 | 91/84 | 92/85 | | D. f.d | Refrigerant circuits | # | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | | Refrigerant | Refrigerant (R410A) charge | kg | 9.5 | 12.3 | 17.6 | 20.5 | 22.8 | 29.5 | 32 | 43.3 | 46 | | | Туре | | | | | DC Sc | roll Inverter + | Scroll | | | | | Compressor | Capacity steps | % | | | | St | epless (Invert | er) | | | | | | Quantity | | 2 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | | | Fan motor type | | | | | | EC motor | | | | | | Air side | Fans quantity | | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | | heat exchanger | Working ambient temp. cooling mode | | | | -18 ~ 48°C | | | | | | | | | Working ambient temp. heat. mode | | | | | | -15 ~ 25°C | | | | | | | Туре | | | | | Plat | e Heat Excha | nger | | | | | | Unit water volume (w/o pump kit) | I | 9 | 10 | 11 | 14 | 15 | 27 | 29 | 32 | 34 | | Water | Pump Type | | | | | Variab | le Speed Drive | e Pump | | | | | side heat | Nominal water flow | l/s | 2.1 | 2.9 | 3.7 | 4.7 | 5.8 | 7.4 | 9.1 | 10.5 | 11.9 | | exchanger | Pressure drop | kPa | 25 | 24 | 23 | 30 | 38 | 23 | 29 | 41 | 38 | | | Working range water leaving temp. cod | oling | | | | | -8 ~ 20°C | | | | | | | Working range water leaving temp. her | ating | | | | | 25 ~ 55°C | | | | | | | Height (w/o pump kit) | mm | | | 2440 | | | | 25 | 00 | | | Dimensions | Width (w/o pump kit) | mm | | | 1200 | | | | 30 | 50 | | | & Weight | Depth (w/o pump kit) | mm | 15 | 500 | | | | 2240 | | | | | | Operating weight (w/o pump kit) | kg | 575 | 598 | 875 | 901 | 979 | 1922 | 2003 | 2235 | 2316 | YMAA: Cooling only units models. YMPA: Air to water heat pump models. Net values at Eurovent nominal conditions: The twides at Lawrent minimal conditions. Cooling capacities in kW given for 7°C water leaving temperature Δt 5°C and 35°C ambient temperature Heating capacities in kW given for 45°C water leaving temperature and 7°C ambient temperature SEER and SCOP calculated according to EN14511 and EN14825 ηs calculated according to Ecodesign regulation for chillers comfort cooling and heating (813/2013, 2016/2281) For other Ecodesign calculations, please contact your JCI representative The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects ### Advanced Control Made Easy To help maximize efficiency and keep you in control, the YORK® Amichi™ Series comes standard with integrated Smart Equipment. This technology allows the equipment to connect seamlessly to building controls like our world-class Verasys $^{\mathbf{M}}$ system, where smart-enabled equipment can self-identify and interoperate. Manufacturer reserves the rights to change specifications without prior notice. ^{*} models with preliminary info. # Dimensions, hydraulic connections ### YMAA-YMPA 045 and 065 Single unit All dimensions in mm. Drawings not a scale. #### YMAA-YMPA 080 to 130 Single unit ## Dimensions, hydraulic connections ### YMAA-YMPA 160 and 200 Single unit All dimensions in mm. Drawings not a scale. #### YMAA-YMPA 230 and 260 Single unit ### YLHD Air to water scroll heat pump YLHD 0040 to 0150 A complete range from 39.8 kW up to 145 kW The new **YORK YLHD** air to water scroll heat pumps with powered fans are ideal solution for units to be installed in technical rooms or in louvered/hidden spaces on the roof. Sharing the reliable and proven designed with YLHA, these new units using R410A aims to help the installer and the user to help to find solutions for special and difficult installations. The bigger sizes (from 100 to 150 kW) utilize new EC Inverter radial fans, that will keep always the right performance for the unit at any outdoor condition. #### **Features** - · Centrifugal or radial fans - Scroll compressor - · Vertical and horizontal discharge - Integrated Hydro kit (P versions) - LAK (-18°C) standard (sizes 100-150) - · Flow switch standard #### Options / Accessories - Vertical Discharge kit (sizes 40 to 70) - · Low Noise (sizes 100 to 150) - Dual Water Pumps (sizes 100 to 150) - · Water filter and water flow switch - Antivibration mounting - · Remote control and remote terminal - · BMS communication (Carel and Modbus protocol) EC Radial Fans (sizes 100 to 150), using new high efficiency ventilation technology to improve the overall performance. Integrated Hydrokit, shared with YLHA product platform, for a compact and quick installation. ### Air to water scroll heat pump YLHD 0040 to 0150 #### Technical features ${f T}$ Three phases supply ${f P}$ Hydro Pack ${f H}$ Heat pump | Madala | | | | | YLHD | | | |-----------------|---|---------|-------------------|------------------|----------------------------|---------------------------|---------------| | Models | | | 0040 T-TP | 0070 T-TP | 0100 T-TP | 0120 T-TP | 0150 T-TP | | | Cooling capacity (1) | kW | 39.8 | 67.5 | 95.4 | 116.5 | 142.5 | | | Heating capacity (1) | kW | 43.2 | 72.5 | 104.6 | 120.1 | 159.5 | | | Total Input Power cool/heat mode (1) | kW | 15.13 / 15.6 | 26.57 / 26.46 | 36.27 / 37.63 | 42.21 / 43.2 | 60.13 / 59.07 | | | EER / COP (1) | | 2.63 / 2.77 | 2.54 / 2.74 | 2.63 / 2.78 | 2.76 / 2.78 | 2.37 / 2.7 | | | SCOP | | 3.3 | 3.38 | 3.7 | 3.57 | 3.42 | | | ŋs, h | | 129 | 136 | 145 | 140 | 134 | | | Capacity steps | % | 50- | 100 | | 25-50-75-100 | | | | Sound power level | dB(A) | 83 | 86 | 86 | 86 | 87 | | |
Туре | | | | Scroll | | | | ompressor | Quantity | | 2 | 2 | 4 | 4 | 4 | | | Fans quantity | | 2 | 2 | 4 | 4 | 4 | | ir side | Nominal air flow | m³/h | 18 000 | 23 000 | 36 (| 000 | 48 000 | | eat
kchanger | Nominal static pressure | Pa | 100 | 150 | | 200 | | | xerianger | Working ambient temp. cool. / heat. m | node | (4) (-18°C) ~ 46° | C / -10°C ~ 20°C | - | 18°C ~ 46°C / -10°C ~ 20° | С | | | Туре | | Single plate h | eat exchanger | | Dual plate heat exchanger | | | | Unit water volume | Litres | 84 | 92 | 193 | 195 | 214 | | | Pump Type | | | | Multistage horizontal pump |) | | | /ater side | Nominal water flow | I/h | 6 880 | 12 040 | 17 030 | 20 470 | 24 940 | | eat | Available pressure (1) (2) | kPa | 105 | 120 | 187 | 202 | 186 | | xchanger | Pressure drop (1) (3) | kPa | 31 | 53 | 54 | 32 | 24.5 | | | Working range water leaving temperature cooling / heating (5) | | | | -5°C ~ 15°C / 30°C ~ 50°C | | | | | Water connections | inch | 2 | | | 2-1/2" | | | | Height | mm | 1 794 | 1 794 | 2 460 | 2 460 | 2 480 | | imensions | Width | mm | 2 659 | 2 659 | 3 466 | 3 416 | 3 768 | | Weight | Depth | mm | 897 | 897 | 1 101 | 1 101 | 1 101 | | | Weight without pack / pack | kg | 750 / 790 | 760 / 800 | 1 284 / 1 380 | 1 284 / 1 380 | 1 700 / 1 796 | | l. supply | Voltage / Phases / Frequency | V/ph/hz | | | 400 / 3 / 50 + N + E | | | (1) net values at Eurovent nominal conditions (2) version P with hydro kit with filter (3) version without hydro kit (4) -18°C with LAK option (5) below 6°C with glycol Nominal conditions: Cooling capacities in kW given for 7°C water leaving temperature Δt 5°C and 35°C ambient temperature. Heating capacities in kW given for 45°C water leaving temperature and 7°C ambient temperature. SCOP calculated according to EN14511 and EN14825. For other Ecodescipa calculations, please contact your JCI representative. ns calculated according to Ecodesign regulation for heating (813/2013). #### Compatibility table / Codes | Models | 0040 T | 0070 T | 0100 T | 0120 T | 0150 T | | | | |--|------------|------------|------------|------------|------------|--|--|--| | Heat pump unit YLHD | S668574083 | S668577083 | S668571083 | S668571283 | S668571583 | | | | | Models | 0040 TP | 0070 TP | 0100 TP | 0120 TP | 0150 TP | | | | | Heat pump unit YLHD | S668574080 | S668577080 | S668571080 | S668571280 | S668571580 | | | | | Use this unit code when a factory fitted option is NOT | required | | | | | | | | | Accessories (Supplied loose) | | | | | | | | | | AVM mounting | S613029002 | S613028180 | | S613021580 | | | | | | Flow switch | | | S611992021 | | | | | | | Remote control | S613802011 | | | | | | | | | Remote terminal | S6138 | 02231 | - | | | | | | | Cable for remote connection of the terminal | | S613802241 | | | | | | | | B.M.S. Communication | S6138 | 02041 | | S613802051 | | | | | | Models | 0040 T | 0070 T | 0100 T | 0120 T | 0150 T | | | | | Heat pump unit YLHD | S668000266 | S668000270 | S668000274 | S668000278 | S668000282 | | | | | Models | 0040 TP | 0070 TP | 0100 TP | 0120 TP | 0150 TP | | | | | Heat pump unit YLHD | S668000267 | S668000271 | S668000275 | S668000279 | S668000283 | | | | | Use this unit code when a factory fitted option is requi | ired | | | | | | | | | Options (Factory fitted) | | | | | | | | | | Low noise | S613990550 | NA | S613991050 | S613991285 | S613991584 | | | | | Dual pump | NA | NA | S613991040 | S613991286 | S613991585 | | | | | Coil guard net | Stan | dard | S6139 | 95093 | S613995094 | | | | | Low Ambient Kit | S6131 | 11084 | | Standard | | | | | | Soft start | S6067 | 44693 | | S606744694 | | | | | Vertical air discharge Copper/copper condenser Standard Contact Johnson Controls S612828205 # Dimensions and hydraulic connections #### YLHD 0040-0070 T/TP All dimensions in mm. Drawings not a scale. | Unit | Α | В | С | D | E | F | G | Н | - 1 | J | K | L | M | N | |----------------|-------|------|-----|-----|------|----|------|----|-----|----|-------|-----|------|----| | YLHD 0040 T/TP | 1 794 | 2658 | 897 | 148 | 1155 | 95 | 1155 | 30 | 389 | 37 | 1 200 | 138 | 2479 | 23 | | YLHD 0070 T/TP | 1 794 | 2658 | 897 | 148 | 1155 | 95 | 1155 | 30 | 389 | 37 | 1 200 | 138 | 2479 | 23 | #### YLHD 0100-0120 T/TP | Unit | Α | В | С | D | E | F | G | Н | - 1 | J | K | L | M | N | |----------------|-------|-----|-------|-----|-------|-------|-------|-----|-----|----|-------|-----|-----|-----| | YLHD 0100 T/TP | 3 466 | 183 | 1 550 | 704 | 2 058 | 1 942 | 2 460 | 500 | 410 | 59 | 1 450 | 200 | 290 | 380 | | YLHD 0120 T/TP | 3 416 | 183 | 1 525 | 604 | 2 208 | 1 942 | 2 460 | 500 | 418 | 55 | 1 438 | 200 | 290 | 380 | ### YLHD 0040 to 0150 #### YLHD 0150 T/TP | Unit | Α | В | С | D | E | F | G | Н | 1 | J | K | L | M | N | |----------------|-------|-----|-------|-----|-------|-------|-------|-----|-----|----|-------|-----|-----|-----| | YLHD 0150 T/TP | 3 768 | 254 | 1 630 | 605 | 2 558 | 1 992 | 2 480 | 470 | 386 | 55 | 1 617 | 410 | 210 | 458 | ### YCME / YHME Series 2 Modular screw chillers and heat pumps YCME/YHME 0162HE to 0222HE A complete range from 160 kW up to 225 kW #### Modular concept #### Provide flexibility and achieve reliability Up to 8 modules in one water system brings important benefits. #### Achieve reliability Full redundancy – Safety first. Should a module fail, the remaining modules maintain operational continuity. #### Example of module configurations #### Fully configurable units #### Increase the versatility Up to 60 different options and accessories make our chiller as unique as the project needs. Some of the most interesting are: ### Modular screw chillers and heat pumps YCME/YHME 0162HE to 0222HE #### YCME Air-cooled Chiller Performance Data | Individual modules | | YCME0162HE | YCME0182HE | YCME0202HE | YCME0222HE | | | | | | |--|-----------------------------|---|---------------|------------|------------|--|--|--|--|--| | Cooling capacity | kW | 160 180 | | 205 | 225 | | | | | | | Total power input | kW | 51.3 | 57.7 | 65.4 | 70.9 | | | | | | | SEER | | | Mont Foodoois | | | | | | | | | ŋs, c | Meet Ecodesign requirements | | | | | | | | | | | Sound power level | dB(A) | 96 | 97 | 98 | 99 | | | | | | | Dimensions (H x W x D) | mm | 2450 x 19 | 55 x 2290 | 2450 x 19 | 955 x 3230 | | | | | | | Operating weight | kg | 1300 | 1340 | 1590 | 1680 | | | | | | | Chilled Water Outlet (std, options Low / High) | °C | +5°C ~ +15°C, with Options -10°C ~ +5°C / +15°C ~ +30°C | | | | | | | | | | Ambient Air Temperature | °C | -15°C ~ +46°C | | | | | | | | | | Electrical Power Supply | | 3N - 400V 50Hz | | | | | | | | | #### YHME Air-cooled Heat Pump Performance Data | Individual modules | | YHME0162HE | YHME0182HE | YHME0202HE | YHME0222HE | | | | | | |--|-------|---|------------------------------|----------------------------|------------|--|--|--|--|--| | Cooling capacity | kW | 150 | 170 | 195 | 210 | | | | | | | Total power input | kW | 51.1 | 58.0 | 66.1 | 70.2 | | | | | | | Heating capacity | kW | 145 | 145 | 185 | 186 | | | | | | | Total power input | kW | 51.5 | 51.6 | 65.3 | 65.4 | | | | | | | SCOP | | | Mark Fardasia | | | | | | | | | ŋs, h | | Meet Ecodesign requirements | | | | | | | | | | Sound power level | dB(A) | 96 | 97 | 98 | 99 | | | | | | | Dimensions (H x W x D) | mm | 2450 x 19 | 55 x 2290 | 2450 x 19 | 55 x 3230 | | | | | | | Operating weight | kg | 1400 | 1420 | 1680 | 1760 | | | | | | | Chilled Water Outlet (std, options Low / High) | °C | - | +5°C ~ +15°C, with Options - | 10°C ~ +5°C / +15°C ~ +30° | 2 | | | | | | | Heated Water Outlet | °C | +35°C ~ +55°C | | | | | | | | | | Ambient Air Temperature (Cool / Heat) | °C | -15°C ~ 46°C / -9.5 (DB), -10 (WB) ~ +21 (DB), +15.5 (WB) | | | | | | | | | | Electrical Power Supply | | 3N - 400V 50Hz | | | | | | | | | Net values at Eurovent nominal conditions: Cooling capacities in kW given for 7° C water leaving temperature Δt 5° C and 35° C ambient temperature. Heating capacities in kW given for 45° C water leaving temperature and 7° C ambient temperature. For Ecodesign calculations, please contact your JCI representative. Sound Pressure: measured at 1.5m height, and at 1m distance from the control panel. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. ### Widest operating range at highest efficiency #### YCME/YHME Cooling operating range Chilled water outlet temperature: -10°C to +30°C Ambient temperature: -15°C to +46°C #### YHME Heating operating range Hot water outlet temperature: +35°C to +55°C Ambient temperature: -10°C (WB) to +15.5°C (WB) Two operating modes selectable at commissioning allow the installation's performance to focus on either high efficiency or high accuracy outlet water temperature. Manufacturer reserves the rights to change specifications without prior notice. # Dimensions and hydraulic connections #### YCME/YHME 0162-0182 ### YCME/YHME 0162HE to 0222HE #### YCME/YHME 0202-0222 ### YLAA Air-cooled scroll compressor chiller Cooling capacities from 198 kW to 527 kW ### Options / Accessories - Soft start - Power Factor Correction Capacitors - · Low ambient kit - BMS Interfacing options - Dual pressure relief valves - · Victaulic coupling - Flow switch - · Heat recovery option - · Enclosure options - · Sound attenuation options - · Anti-vibration mounts options - · Hydrokits with single and dual pump - Epoxy Post-coated Dipped Microchannel Coils - · VSD Fans #### **Features** The YORK YLAA TEMPO air-cooled chiller is an environmental leader. Utilising scroll type compressors and microchannel condenser coil technology the **YLAA** delivers
premium efficiency for all air conditioning applications. **YLAA** chillers are a self-contained cooling solution that is light-weight and compact for convenient installation on the ground or on building rooftops. The TEMPO delivers energy efficiency levels that surpasses Eurovent A Class requirements. Aluminium microchannel condenser coil technology is one reason for this premium efficiencies. Ultra quiet operation can be obtained through optional dual or low speed fans and a compressor accousite enclosure. A single point power connection and optional, factory packaged water pumps, water filter and flow switch provide fast and easy installation. An optional heat recovery feature can be added to provide hot water to 50° C; which is useful for facility heating or hot water preheating. ### Air-cooled scroll compressor chiller YLAA 0195 to 0517 #### Nominal capacity | YLAA | 0195 | 0221 | 0261 | 0286 | 0301 | 0350 | 0391 | 0442 | 0457 | 0517 | |---|------|-----------------------------|------|------|------|------|------|------|------|------| | Cooling capacity (kW) | 198 | 211 | 248 | 273 | 298 | 348 | 380 | 433 | 459 | 527 | | EER | 3.09 | 3.20 | 3.10 | 2.60 | 3.00 | 2.94 | 2.99 | 2.96 | 2.96 | 2.95 | | SEER | | | | | | | | | | | | ŋs, c | | Meet Ecodesign Requirements | | | | | | | | | | Sound power level dB(A) | 89 | 91 | 93 | 93 | 93 | 94 | 95 | 95 | 96 | 96 | | Sound power level Low Noise Version dB(A) (1) | 82 | 84 | 87 | 87 | 86 | 87 | 88 | 88 | 89 | 89 | Cooling capacities in kW given for 7°C water leaving temperature Δt 5°C and 35°C ambient temperature For Ecodesign calculations, please contact your JCl representative. (1) Low noise version fits Ultra Quiet Fans and compressor acoustic enclosures The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects #### Technical data | YLAA | | 0195 | 0221 | 0261 | 0286 | 0301 | 0350 | 0391 | 0442 | 0457 | 0517 | | |---------------------|--------|------|------|-----------|------|------|------|------|------|------|------|------| | | Length | mm | | 2911 | | | 3614 | | | 4769 | | | | Dimensions | Width | mm | | 2254 2242 | | | 2254 | | | | | | | | Height | mm | 2507 | | | | | | | | | | | Operating weight kg | | | 1706 | 1721 | 1851 | 1853 | 2170 | 2339 | 2508 | 3343 | 3481 | 3615 | ### YLAA Pump Kit - Two option levels basic and full featured for maximum flexibility - More impeller size options for better match to customer requirements - New, smaller pump motors suitable for primary-secondary systems # Dimensions and hydraulic connections ### YLAA 0195, 0221 & 0261 All dimensions in mm. Drawings not a scale. #### YLAA 0301 & 0391 ### YLAA 0195 to 0517 #### **YLAA0442** All dimensions in mm. Drawings not a scale. #### YLAA0457 & 0517 # YLRA Air cooled heat pump scroll compressor Cooling capacities from 182 kW to 309 kW Heating capacities from 200 kW to 328 kW At Eurovent Standard Conditions all models meet A Class energy efficiency levels for heating mode. #### **Features** **YLRA** are available in 6 models, from 200 to 330, with a nominal capacity range from 182 to 309 kW in cooling mode and from 200 to 328 kW in heating mode. Up to 3.99 ESEER with EC fans. Except for the fans all the units have the same configuration of base units (structure, electrical board, compressors and coils). Each model is available in the following acoustic versions: - Basic Low Noise version (BLN): These models are equipped with delta connected fans running at a fixed rpm and are fitted with compressor boxes to reduce noise emissions. - Super Low Noise version (SLN): Those models are equipped with special inverter fans driven by EC (electronic brushless type), fitted with a variable speed controller which allows the fans to operate at a very low rpm. The chillers are supplied with compressor boxes and soundproof jackets on compressors reducing significantly the noise emissions. The BLN model is also available in an EC version (developed for high seasonal efficiency) which has the same equipment as that of the standard BLN model, except that the units are equipped with special inverter fans driven by EC (electronic brushless type) motors with integrated electronic inverter, to ensure low energy consumption. #### Options / Accessories - ModBus protocol kit for BMS (standard) - · Lonwork protocol kit for BMS - · Bacnet protocol kit for BMS - Soft start - Power factor correction capacitors - · Compressors overload protection - Condensing control kit (down to -14°C ambient temperature in cooling mode) - Polar version (down to -18°C ambient temperature in heating mode) - · Double set point - HP & LP manometers - E-coating Al/Cu condenser coils - · Chiller grilles - Desuperheater - · Optional hydro kits - · Remote ON/OFF control - · Remote keyboard panel - Sequencer unit - Spring isolators - · Flow switch - · Water filter ### Heat pump scroll compressor YLRA 0200 to 0330 #### Nominal capacity | YLRA BLN versions | 0200 | 0230 | 0260 | 0280 | 0300 | 0330 | |-------------------------|------|------|------|------|------|------| | Cooling capacity (kW) | 182 | 213 | 244 | 261 | 288 | 309 | | EER | 2.93 | 2.92 | 2.91 | 2.88 | 2.92 | 2.97 | | Heating capacity (kW) | 200 | 229 | 262 | 279 | 306 | 328 | | COP | 3.23 | 3.23 | 3.21 | 3.21 | 3.22 | 3.21 | | SCOP | 3.25 | 3.43 | 3.43 | 3.43 | 3.33 | 3.43 | | ŋs, h | 127 | 134 | 134 | 134 | 130 | 134 | | Sound power level (dBA) | 92 | 92 | 93 | 93 | 94 | 95 | Net values at Eurovent nominal conditions: Cooling capacities in kW given for 7°C water leaving temperature Δt 5°C and 35°C ambient temperature Heating capacities in kW given for 45°C water leaving temperature and 7°C ambient temperature SCOP calculated according to EN14825 ηs calculated according to Ecodesign regulation for heating (2016/2281) To culculate ductioning to Ecologism regulation for lieuting (2010/221). Sound levels are at fully loaded conditions. Sound power level values refer to ISO standard 3744 and Eurovent 8/1. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. #### Technical data | YLRA BLN versions | | | 0200 | 0230 | 0260 | 0280 | 0300 | 0330 | |-----------------------|--------|----|-------|------|-------|------|------|------| | Length mm | | | | 3 5 | 4 550 | | | | | Dimensions | Width | mm | 2 150 | | | | | | | | Height | mm | | | 2 6 | 600 | | | | Operating weight (kg) | | | 1858 | 1993 | 2216 | 2226 | 2806 | 2899 | #### Operating limits Thanks to the different versions available, the YLRA is working in a wide operating envelope in cooling mode. Special attention to the Polar Version optional, which is extending the heating envelope of the units to allow operation at ambient temperatures as low as -18°C. #### Operating limits in cooling mode Manufacturer reserves the rights to change specifications without prior notice. # Dimensions and hydraulic connections #### YLRA 0200 to 0280 All dimensions in mm. Drawings not a scale. #### NOTES: **B, E** - WATER CONNECTION GAS M F - ELECTRICAL POWER SUPPLY I - GAUGE KIT (ACCESSORY) L - MAIN SWITCH M - CONTROL KEYPAD / DISPLAY OPTIONAL DESUPERHEATER **O** - WATER OUTLET Ø1" GAS M P1, P2, P3, P4 AVM POSITION | Size | LGH | Ø | |---------------------|-----|----------------------------| | YLRA 0200 | 440 | 2" 1/2 Victaulic Ø 76.1 mm | | YLRA 0230 to 0280 | 344 | 3" Victaulic Ø 88.9 mm | | 1 LIVA 0230 to 0200 | 344 | 3 Victable 9 00.5 Illiii | | Size | H1 | H2 | |-------------------|-----|-----| | YLRA 0200 | 246 | 370 | | YLRA 0230 to 0280 | 205 | 520 | ### Dimensions and hydraulic connections #### YLRA 0300 and 0330 All dimensions in mm. Drawings not a scale. #### NOTES: B, E - WATER CONNECTION 3-GAS M Ø88.9 mm F - ELECTRICAL POWER SUPPLY I - GAUGE KIT (ACCESSORY) L - MAIN SWITCH M - CONTROL KEYPAD / DISPLAY OPTIONAL DESUPERHEATER N - WATER INLET Ø1" GAS M O - WATER OUTLET Ø1" GAS M P1, P2, P3, P4 AVM POSITION ### YLPB Heat pump scroll compressor Cooling capacities from 335 kW to 626 kW Heating capacities from 345 kW to 656 kW #### **Features** The **YLPB** heat pump delivers premium energy efficiency, it is easy to install, quiet to run, and it is supported by a knowledgeable service force. #### Efficiency One of the highers part load cooling efficiency unit in the market, improved defrost cycle, extended operating envelope. Maximize heating efficiency and renewable energy use with the **YLPB** heat pump. #### Sound Designed for quiet operation at full and part load conditions. #### Ease of installation Quick and easy to install, compact design. Smart Equipment and Verasys $^{\text{TM}}$ ready. #### Reliability The **YLPB** is our third generation of fully factory tested scroll heat pumps, and thanks to our extensive service solutions, support and minimal maintenance are assured. #### Options / Accessories - Soft start - Power Factor Correction Capacitors - BMS Interfacing options - · Dual pressure relief valves - · Victaulic coupling - · Flow switch - Desuperheater - Enclosure options - $\boldsymbol{\cdot}$ Sound attenuation options - · Anti-vibration mounts options - · VSD Single and Dual Pump Kits Multiple scroll design enables sound reduction during part load operation by simply turning off unnecessary compressors ### Heat pump scroll compressor YLPB 0345 to 0650 #### Nominal capacity | YLPB | 0345 | 0430 | 0525 | 0575 | 0650 | |-------------------------|------|------|------|------|------| | Cooling capacity (kW) | 335 | 411 | 477 | 557 | 626 | | EER | 3.00 | 2.93 | 2.88 | 2.95 | 3.00 | | Heating capacity (kW) | 345 | 429 | 515 | 577 | 656 | | COP | 3.05 | 3.05 | 3.02 | 2.97 | 2.99 | | SCOP | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | | ŋs, h | 127 | 127 | 127 | 127 | 127 | | Sound Power Level (dBA) | 95 | 95 | 97 | 99 | 101 | Net values at Eurovent nominal conditions: Cooling capacities
in kW given for 7°C water leaving temperature Δt 5°C and 35°C ambient temperature Heating capacities in kW given for 45°C water leaving temperature and 7°C ambient temperature SCOP calculated according to EN14511 and EN14825 ηs calculated according to Ecodesign regulation for heating (813/2013) The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects #### Technical data | YLPB | | | 0345 | 0430 | 0525 | 0575 | 0650 | |---------------------|--------|----|------|------|------|------|------| | | Length | mm | | 4721 | | 5838 | 6955 | | Dimensions | Width | mm | 2242 | | | | | | | Height | mm | | | 2501 | | | | Operating weight kg | | | 3753 | 3993 | 4150 | 4687 | 5436 | #### High Efficiency Cooling Mode 500 kW unit, 3000 operating hours, energy rate = 0.1 EUR / kWh #### Additional Energy Savings in Heating Mode Energy Rate: Electricity 0.1 EUR / kWh; Gas 0.03 EUR / kWh #### Carbon footprint in Heating Mode Manufacturer reserves the rights to change specifications without prior notice. # Dimensions and hydraulic connections #### YLPB 0345, 0430 & 0525 All dimensions in mm. Drawings not a scale. #### YLPB 0345, 0430 & 0525 4474 ### YLPB 0345 to 0650 #### YLPB 0575 All dimensions in mm. Drawings not a scale. #### YLPB 0650 ### YVAA Air-cooled VSD screw chiller #### Cooling capacities from 569 kW to 1654 kW At Eurovent Standard Conditions this equipment meets A Class energy efficiency levels. Compatible range #### **Features** - Reduce your annual energy costs by as much as 30% - Reduce your sound levels by up to 16 dBA to meet tighter regulations - Enhance your flexibility with a variety of chiller options to fit your needs - · Minimise your environmental impact dramatically - · Lower your part load energy and night time sound levels with inverter fans and compressors - · Deliver increased motor longevity and increased chiller reliability with low starting currents - · Cut your operational expenses with a high chiller power factor at all loads - · Improve your peace of mind knowing we stand behind every chiller #### Options / Accessories - · BMS Interfacing options - Advanced Controls (Silent night[™], Quick restart) - · Low temperature application options - · Dual pressure relief valves - · Flow switch - · Epoxy treatment Microchannel Coils - Fan options - Enclosure options - · Sound attenuation options - · Anti-vibration mounts options - Desuperheater Reduce refrigerant charges by up to 15% beyond traditional chiller designs with the YVAA's falling-film evaporator and microchannel condenser coil technology. A more efficient chiller means less electricity generation, which reduces greenhouse gas emissions, water consumption - and your environmental footprint. The sustainability advantages of the YVAA chiller give you the opportunity to earn points in the LEED® and BREEAM® building certification programs. ### Air-cooled VSD screw chiller YVAA 0588 to 1843 #### Application flexibility (*) example of selections | YVAA | 0588 | 0643 | 0665 | 0688 | 0700 | 0743 | 0765 | 0788 | 0843 | 0865 | 0888 | 0943 | |-------------------------|------|------|------|------|------|------|------|------|------|------|------|------| | Cooling capacity (kW) | 569 | 573 | 588 | 639 | 614 | 658 | 649 | 738 | 748 | 768 | 808 | 812 | | EER | 3.24 | 3.07 | 3.17 | 3.23 | 2.83 | 3.13 | 3.16 | 3.15 | 2.90 | 3.14 | 3.17 | 2.99 | | SEER | 4.32 | 4.27 | 4.40 | 4.58 | 4.15 | 4.41 | 4.63 | 4.73 | 4.50 | 4.73 | 4.80 | 4.61 | | ŋs, c | 170 | 168 | 173 | 180 | 163 | 173 | 182 | 186 | 177 | 186 | 189 | 181 | | Sound power level (dBA) | 98 | 96 | 97 | 98 | 95 | 97 | 96 | 98 | 98 | 98 | 98 | 99 | | YVAA | 0960 | 0963 | 0965 | 0988 | 1015 | 1065 | 1088 | 1093 | 1143 | 1173 | 1188 | 1193 | 1215 | |-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Cooling capacity (kW) | 832 | 867 | 898 | 933 | 948 | 971 | 997 | 964 | 1002 | 1008 | 1022 | 1017 | 1047 | | EER | 3.06 | 3.07 | 3.09 | 3.15 | 3.13 | 3.02 | 3.15 | 2.92 | 2.95 | 2.92 | 3.18 | 3.07 | 3.11 | | SEER | 4.48 | 4.71 | 4.87 | 5.00 | 4.85 | 4.74 | 4.97 | 4.61 | 4.68 | 4.61 | 5.02 | 4.78 | 4.90 | | ŋs, c | 176 | 186 | 192 | 197 | 191 | 187 | 196 | 181 | 184 | 182 | 198 | 188 | 193 | | Sound power level (dBA) | 98 | 99 | 99 | 100 | 99 | 100 | 100 | 100 | 99 | 100 | 100 | 100 | 100 | | YVAA | 1288 | 1315 | 1343 | 1388 | 1443 | 1488 | 1515 | 1543 | 1650 | 1665 | 1693 | 1700 | 1843 | |-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Cooling capacity (kW) | 1118 | 1077 | 1221 | 1260 | 1455 | 1237 | 1346 | 1371 | 1385 | 1390 | 1545 | 1569 | 1654 | | EER | 3.23 | 3.17 | 3.11 | 3.11 | 2.92 | 3.17 | 3.14 | 3.16 | 3.08 | 3.04 | 3.07 | 2.91 | 2.96 | | SEER | 4.84 | 4.72 | 4.68 | 4.63 | 4.56 | 4.87 | 4.83 | 4.86 | 4.73 | 4.62 | 4.75 | 4.57 | 4.67 | | r)s, c | 190 | 186 | 184 | 182 | 179 | 192 | 190 | 192 | 186 | 182 | 187 | 180 | 184 | | Sound power level (dBA) | 100 | 100 | 101 | 100 | 101 | 101 | 102 | 102 | 103 | 102 | 102 | 103 | 105 | Net values at Eurovent nominal conditions for models using R134a: Cooling capacities in kW given for 7°C water leaving temperature Δt 5°C and 35°C ambient temperature. SEER calculated according to EN14511 and EN14825. ns calculated according to Ecodesign regulation for chillers comfort cooling (2016/2281). For other Ecodesign calculations, please contact your JCI representative. (*) YVAA is a tailor and tune chiller. Its performance will be factory-adjusted to match the exact site requirements based on the specific project operating conditions. The table above shows only a representative sample of performance points based on generic project operating conditions working with R134a refrigerant. For R513a information contact your JCI Representative. For tailored and tuned performance based on your specific project requirements, and for more information, please contact your Johnson Controls representative. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. #### Technical data | YVAA | | | 0588 | 0643 | 0665 | 0688 | 0700 | 0743 | 0765 | 0788 | 0843 | 0865 | 0888 | 0943 | | |------------------|--------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Length | mm | 7397 | 6274 | 7397 | 8514 | 5741 | 7397 | 7397 | 8514 | 7397 | 8514 | 9631 | 8514 | - | | Dimensions | Width | mm | | | | | | 22 | 241 | | | | | | - | | | Height | mm | | | | | | 24 | 101 | | | | | | - | | Operating weigl | nt kg | | 7554 | 6208 | 6551 | 7012 | 6977 | 6589 | 7668 | 8011 | 6793 | 8100 | 8445 | 7151 | - | | Refrigerant char | ge kg | | 204 | 150 | 164 | 189 | 186 | 160 | 204 | 218 | 182 | 216 | 228 | 192 | - | | | | | | | | | | | | | | | | | - | | YVAA | | | 0960 | 0963 | 0965 | 0988 | 1015 | 1065 | 1088 | 1093 | 1143 | 1173 | 1188 | 1193 | 1215 | | | Length | mm | 7397 | 8514 | 8514 | 9631 | 9631 | 10748 | 10748 | 9631 | 9631 | 10748 | 11865 | 10748 | 11865 | | Dimensions | Width | mm | | | | | | | 2241 | | | | | | | | | Height | mm | | | | | | | 2401 | | | | | | | | Operating weigh | nt kg | | 7412 | 8314 | 8651 | 8996 | 9201 | 9007 | 9546 | 8665 | 9362 | 8612 | 9891 | 9704 | 10049 | | Refrigerant char | ge kg | | 228 | 240 | 242 | 246 | 261 | 248 | 268 | 243 | 268 | 264 | 277 | 282 | 286 | | | | | | | | | | | | | | | | | | | YVAA | | | 1288 | 1315 | 1343 | 1388 | 1443 | 1488 | 1515 | 1543 | 1650 | 1665 | 1693 | 1700 | 1843 | | | Length | mm | 12987 | 11864 | 11864 | 14104 | 11864 | 15222 | 14104 | 14104 | 11864 | 15222 | 15222 | 11865 | 15222 | | Dimensions | Width | mm | | | | | | | 2241 | | | | | | | | | Height | mm | | | | | | | 2401 | | | | | | | | Operating weigl | nt kg | | 12435 | 12086 | 11169 | 12939 | 10558 | 13284 | 11249 | 12802 | 11287 | 14066 | 13149 | 12951 | 14066 | | Refrigerant char | ge kg | | 360 | 353 | 302 | 378 | 365 | 390 | 382 | 336 | 358 | 404 | 350 | 368 | 404 | All drawings are for two pass evaporator. For other configurations, please, contact JCI. #### YVAA 0700 All dimensions in mm. Drawings not a scale #### YVAA 0643 All dimensions in mm. Drawings not a scale. #### YVAA 0588, 0665, 0743, 0765, 0843 & 0960 All drawings are for two pass evaporator. For other configurations, please, contact JCI. #### YVAA 0688, 0788, 0865, 0943, 0963 & 0965 All dimensions in mm. Drawings not a scale. #### YVAA 0888, 0988, 1015, 1093, & 1143 All dimensions in mm. Drawings not a scale. #### YVAA 1065, 1088, 1173, & 1193 All drawings are for two pass evaporator. For other configurations, please, contact JCI. #### YVAA 1188, 1215, 1315, 1343, 1443, 1650 & 1700 All dimensions in mm. Drawings not a scale. #### YVAA 1288 All drawings are for two pass evaporator. For other configurations, please, contact JCI. #### YVAA 1388, 1515 & 1543 All dimensions in mm. Drawings not a scale. #### YVAA 1488, 1665, 1693 & 1843 # YVFA Air-cooled VSD screw chiller with integrated Free-cooling Cooling capacities from 525 kW to 1575 kW At Eurovent Standard Conditions this equipment meets A Class energy efficiency levels. Compatible range #### **Features** - · Available in Open and Closed (glycol free) loop configurations. - Optimized Annual Energy Savings thanks to the unique combination of the YORK Variable Speed Drive technology expertise and the sophisticated freecooling controls. - Reduced installation footprint, thanks to the integration of the free-coolingcoils together with the chiller. - Lower ambient operating range when in free-cooling mode, compared to standard units. #### Options / Accessories - · BMS Interfacing options - Advanced Controls (Silent night[™], Quick restart) - Low temperature application options - · Dual pressure relief valves - · Flow switch - · Epoxy treatment Microchannel Coils - · Fan
options - Enclosure options - \cdot Sound attenuation options - · Anti-vibration mounts options - Desuperheater # YVFA free-cooling chillers are available in open- or closed-loop configurations to maximize efficiency for your specific type od building #### **Open-loop configuration** Open-loop design permits building glycol to flow through the free cooling coils directly, with the best performance and the lowest first cost. #### Closed-loop configuration Closed-loop design integrates a brazed plate heat exchanger and pump loop. The building water loop is isolated from the free cooling coils, and the YVFA pump circulates glycol between the brazed plate heat exchanger and the free cooling coils. This provides the lowest pump pressure drop and a building loop that's glycol-free. # Air-cooled VSD screw chiller with integrated Free-cooling #### Saving energy is simple in every situation #### 1 Mechanical Cooling Mode When it's too warm to use ambient air for cooling, the YVFA performs as a standard chiller. The automatic flow-control valve in the open-loop configuration bypasses the free-cooling coils to reduce pump energy. When either cooling load or ambient temperature are less than full design condition, the variable-speed screw compressors and condenser fans modulate to optimize energy use. In a closed-loop configuration, the free-cooling coils are also bypassed. #### 2 Hybrid Cooling Mode When ambient temperatures permit, liquid flow through the free-cooling coils is enabled. This pre-cooling reduces energy use while the compressors deliver final cooling to meet setpoint. Thanks to YORK® VSD Screw technology, at reduced ambient the compressors may draw less power than the fan motors required to move air through the free-cooling coils. Advanced controls provide the most efficient operation rather than simply shutting off compressors as quickly as possible. The Annual Energy Cost Report demonstrates the benefit of this intelligent control. #### 3 Free Cooling Mode At lower ambient temperatures, full cooling load can be most efficiently delivered by the free-cooling coils. Compressors are shut off and the VSD fans are modulated to meet the cooling setpoint. Manufacturer reserves the rights to change specifications without prior notice. # Open-loop configuration models #### YVFA 0539 OL All dimensions in mm. Drawings not a scale. #### **YVFA 0709 OL** All dimensions in mm. Drawings not a scale. #### YVFA 0889 OL # Open-loop configuration models #### **YVFA 1009 OL** All dimensions in mm. Drawings not a scale. #### **YVFA 1069 OL** All dimensions in mm. Drawings not a scale. #### **YVFA 1239 OL** # Closed-loop configuration models #### YVFA 0709 CL All dimensions in mm. Drawings not a scale. #### YVFA 0889 CL All dimensions in mm. Drawings not a scale. #### **YVFA 1069 CL** ## Closed-loop configuration models #### **YVFA 1239 CL** All dimensions in mm. Drawings not a scale. #### Application flexibility (*) example of selections | YVFA | 0539 | 0709 | 0889 | 1009 | 1069 | 1239 | |---|-------|-------|-------|-------|-------|-------| | Mechanical Cooling capacity (kW) | 500 | 648 | 846 | 946 | 1050 | 1195 | | Full Load Efficiency (EER) - Mechanical | 3.03 | 2.98 | 3.02 | 3.17 | 3.05 | 2.97 | | Part Load Efficiency (SEPR) - Mechanical | 6.31 | 6.31 | 6.53 | 6.83 | 6.56 | 6.29 | | Sound power level (dBA) - Mechanical | 102 | 104 | 106 | 105 | 106 | 108 | | Total Temperature Free-Cooling (°C) | 1.4 | 0.9 | 0 | 0.2 | -0.8 | -0.9 | | Efficiency during Hybrid Mode | 7-25 | 7-26 | 6-25 | 6-25 | 6-20 | 6-20 | | Efficiency during Total Free-Cooling Mode | 25-94 | 25-86 | 25-71 | 25-75 | 20-62 | 20-61 | Cooling Capacity at: entering/leaving chilled water temperature 15°C/10°C (30% Glycol), ambient temperature 35°C Sound Pressure according to Eurovent conditions. #### Technical data | YVFA | | | 0543 | 0565 | 0588 | 0643 | 0665 | 0888 | |-----------------------|--------|----|------|------|-------|-------|-------|-------| | | Length | mm | 6280 | 7397 | 8514 | 9631 | 9631 | 10748 | | Dimensions | Width | mm | | | 22 | 42 | | | | | Height | mm | | | 24 | 05 | | | | Operating weight kg | | • | 7394 | 8504 | 10396 | 11842 | 11884 | 12900 | | Refrigerant charge kg | | | 172 | 164 | 216 | 246 | 262 | 282 | ^(*) YVFA is a tailor and tune chiller. Its peformance will be factory-adjusted to match the exact site requirements based on the specific project operating conditions. The table above shows only a representative sample of performance points based on generic project operating conditions working with R134a refrigerant. For R513a information contact your JCI Representative. For tailored and tuned performance based on your specific project requirements, and for more information, please contact your Johnson Controls representative. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. # YMWA / YMRA Water-cooled cooling only, remote condenser and heat pump scroll compressor chiller Cooling capacities from 21 kW to 193 kW #### **Features** - · Scroll compressors (single or tandem) - · Higher EER and COP - 2 different frames / configurations: - · 1 compressor / 1 circuit up to 45 kW - · 2 compressors / 1 circuit from 50 to 190 kW - Reduced refrigerant charge - Condensing pressure control - "Plug and Play" units Same cabinet w/o or with factory mounted hydrokit (one or two pumps). More compact and slim. #### Available versions 14 available YMWA sizes in three versions: 1) YMWA-CO: Cooling only 2) YMRA: Remote condenser 3) $\mathbf{YMWA}\text{-}\mathbf{HP}$: Reversible heat pump #### Nominal capacity and technical data | 0020 | 0025 | 0030 | 0035 | 0040 | 0045 | 0050 | 0060 | 0075 | 0090 | 0120 | 0150 | 0170 | 0190 | |------|--|---|--|---|--|---|--
--|--|---|--|--|---| | 21 | 26 | 31 | 35 | 39 | 47 | 51 | 61 | 77 | 91 | 119 | 147 | 170 | 193 | | 4.59 | 4.55 | 4.46 | 4.54 | 4.49 | 4.58 | 4.30 | 4.47 | 4.48 | 4.37 | 4.46 | 4.46 | 4.50 | 4.51 | | | | | | | Ma | at Ecodosia | n Doguirom | onto | | | | | | | | | | | | ivie | et econesig | ii Kequileiii | ents | | | | | | | | | 821 / 45 | 55 / 1350 | | | | | | 1210 / 8 | 50 / 1500 | | | | | 162 | 182 | 179 | 185 | 191 | 214 | 352 | 371 | 392 | 411 | 597 | 666 | 701 | 745 | | 0020 | 0025 | 0030 | 0035 | 0040 | 0045 | 0050 | 0060 | 0075 | 0090 | 0120 | 0150 | 0170 | 0190 | | 21 | 26 | 31 | 35 | 39 | 46 | 51 | 62 | 78 | 91 | 119 | 148 | 169 | 193 | | | | 821 / 45 | 5 / 1350 | | | | | | 1210 / 8! | 50 / 1500 | | | | | 144 | 164 | 166 | 166 | 172 | 172 | 332 | 344 | 365 | 376 | 558 | 612 | 643 | 674 | | 0020 | 0025 | 0030 | 0035 | 0040 | 0045 | 0050 | 0060 | 0075 | 0090 | 0120 | 0150 | 0170 | 0190 | | 21 | 26 | 31 | 34 | 38 | 46 | 50 | 59 | 76 | 89 | 115 | 145 | 166 | 186 | | 24 | 29 | 34 | 39 | 43 | 51 | 58 | 68 | 86 | 102 | 132 | 164 | 190 | 212 | | 4.45 | 4.47 | 4.46 | 4.35 | 4.33 | 4.39 | 4.2 | 4.27 | 4.4 | 4.23 | 4.29 | 4.36 | 4.36 | 4.3 | | 3.88 | 3.85 | 3.73 | 3.79 | 3.77 | 3.85 | 3.83 | 3.81 | 3.92 | 3.89 | 3.92 | 3.95 | 3.93 | 3.93 | | | M.E.L. D. | | | | | | | | | | | | | | | weet ecodesign requirements | | | | | | | | | | | | | | | | 821 / 45 | 55 / 1350 | | | | | | 1210 / 8 | 50 / 1500 | | | | | 165 | 187 | 184 | 190 | 195 | 219 | 360 | 379 | 403 | 422 | 610 | 683 | 718 | 762 | | | 162
0020
21
144
0020
21
24
4.45
3.88 | 21 26 4.59 4.55 162 182 0020 0025 21 26 144 164 0020 0025 21 26 24 29 4.45 4.47 3.88 3.85 | 21 26 31
4.59 4.55 4.46
821 / 45
162 182 179
0020 0025 0030
21 26 31
821 / 45
144 164 166
0020 0025 0030
21 26 31
24 29 34
4.45 4.47 4.46
3.88 3.85 3.73 | 21 26 31 35 4.59 4.55 4.46 4.54 821 / 455 / 1350 162 182 179 185 0020 0025 0030 0035 21 26 31 35 821 / 455 / 1350 144 164 166 166 0020 0025 0030 0035 21 26 31 34 34 24 29 34 39 4.45 4.47 4.46 4.35 3.88 3.85 3.73 3.79 821 / 455 / 1350 | 21 26 31 35 39 4.59 4.55 4.46 4.54 4.49 821 / 455 / 1350 162 182 179 185 191 0020 0025 0030 0035 0040 21 26 31 35 39 821 / 455 / 1350 144 164 166 166 172 0020 0025 0030 0035 0040 21 26 31 34 38 24 29 34 39 43 4.45 4.47 4.46 4.35 4.33 3.88 3.85 3.73 3.79 3.77 | 21 26 31 35 39 47 4.59 4.55 4.46 4.54 4.49 4.58 Med 821 / 455 / 1350 162 182 179 185 191 214 0020 0025 0030 0035 0040 0045 21 26 31 35 39 46 821 / 455 / 1350 144 164 166 166 172 172 0020 0025 0030 0035 0040 0045 21 26 31 34 38 46 24 29 34 39 43 51 4.45 4.47 4.46 4.35 4.33 4.39 3.88 3.85 3.73 3.79 3.77 3.85 | 21 26 31 35 39 47 51 4.59 4.55 4.46 4.54 4.49 4.58 4.30 Meet Ecodesig 821 / 455 / 1350 162 182 179 185 191 214 352 0020 0025 0030 0035 0040 0045 0050 21 26 31 35 39 46 51 821 / 455 / 1350 144 164 166 166 172 172 332 0020 0025 0030 0035 0040 0045 0050 21 26 31 34 38 46 50 24 29 34 39 43 51 58 4.45 4.47 4.46 4.35 4.33 4.39 4.2 3.88 3.85 3.73 3.79 3.77 3.85 3.83 Meet Ecodesig | 21 26 31 35 39 47 51 61 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 Meet Ecodesign Requirem 821 / 455 / 1350 162 182 179 185 191 214 352 371 0020 0025 0030 0035 0040 0045 0050 0060 21 26 31 35 39 46 51 62 821 / 455 / 1350 144 164 166 166 172 172 332 344 0020 0025 0030 0035 0040 0045 0050 0060 21 26 31 34 38 46 50 59 24 29 34 39 43 51 58 68 4.45 4.47 4.46 4.35 4.33 4.39 4.2 4.27 | 21 26 31 35 39 47 51 61 77 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 4.48 Meet Ecodesign Requirements Meet Ecodesign Requirements 821 / 455 / 1350 191 214 352 371 392 0020 0025 0030 0035 0040 0045 0050 0060 0075 21 26 31 35 39 46 51 62 78 821 / 455 / 1350 144 164 166 166 172 172 332 344 365 0020 0025 0030 0035 0040 0045 0050 0060 0075 21 26 31 34 38 46 50 59 76 24 29 34 39 43 51 58 68 86 | 21 26 31 35 39 47 51 61 77 91 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 4.48 4.37 Meet Ecodesign Requirements Meet Ecodesign Requirements Meet Ecodesign Requirements 1210 / 8 162 182 179 185 191 214 352 371 392 411 0020 0025 0030 0035 0040 0045 0050 0060 0075 0090 21 26 31 35 39 46 51 62 78 91 144 164 166 166 172 172 332 344 365 376 0020 0025 0030 0035 0040 0045 0050 0060 0075 0090 21 26 31 34 38 4 | 21 26 31 35 39 47 51 61 77 91 119 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 4.48 4.37 4.46 Meet Ecodesign Requirements Meet Ecodesign Requirements 1210 / 850 / 1500 162 182 179 185 191 214 352 371 392 411 597 0020 0025 0030 0035 0040 0045 0050 0060 0075 0090 0120 21 26 31 35 39 46 51 62 78 91 119 821 / 455 / 1350 172 172 332 344 365 376 558 0020 0025 0030 0035 0040 0045 0050 0060 0075 0090 0120 21 26 31 34 38 46 50 59 76 89 115 24 29 34 39 43 51 58 68 86 102 132 4.45 4.47 | 21 26 31 35 39 47 51 61
77 91 119 147 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 4.48 4.37 4.46 4.46 Meet Ecodesign Requirements Meet Ecodesign Requirements 1210 / 850 / 1500 162 182 179 185 191 214 352 371 392 411 597 666 0020 0025 0030 0035 0040 0045 0050 0060 0075 0090 0120 0150 21 26 31 35 39 46 51 62 78 91 119 148 821 / 455 / 1350 172 332 344 365 376 558 612 0020 0025 0030 0035 0040 0045 0050 0060 0075 0090 0120 0150 21 26 31 34 38 46 50 59 76 89 115 145 24 29 34 39 43 51 </td <td> 26 31 35 39 47 51 61 77 91 119 147 170 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 4.48 4.37 4.46 4.46 4.50 </td> | 26 31 35 39 47 51 61 77 91 119 147 170 4.59 4.55 4.46 4.54 4.49 4.58 4.30 4.47 4.48 4.37 4.46 4.46 4.50 | Net values at Eurovent nominal conditions: YMWA-CO: Standard Eurovent LCP/W/AC conditions in cooling mode: evaporator EWT/LWT 12°C/7°C, condenser EWT/LWT 30°C/35°C YMRA: Evaporator EWT/LWT 12°C/7°C, condensing temperature 40°C YMWA-HP: Standard Eurovent LCP/W/AC conditions in cooling mode: evaporator EWT/LWT 12°C/7°C, condenser EWT/LWT 30°C/35°C YMWA-HP: Standard Eurovent LCP/W/AC conditions in heating mode: evaporator EWT/LWT 10°C, condenser EWT/LWT 40°C/45°C YMWA-HP: Standard Eurovent LEPYW/AC Conditions in reduing mode: evaporator EWT/LWT 10°C, Condens SEER and SCOP calculated according to EN14511 and EN14825 The above data is based on Johnson Control's selection software YORKworks 18.02. Please refer to the latest version of the software for specific projects #### YMWA-CO/HP 0020-0045 All dimensions in mm. Drawings not a scale. #### YMWA-CO/HP 0050-0190 without Hydrokit All dimensions in mm. Drawings not a scale. #### YMWA-CO/HP 0050-0190 with Hydrokit | Α | Control display | D | Gauge kit | |---|--|---------|---| | В | Main switch | G, H, L | Water evaporator connections ∅ 1 1/2" victaulic | | С | Auxiliary lines, electrical connection | E, F, I | Water condenser connections Ø 1 1/2" victaulic | All dimensions in mm. Drawings not a scale. | YMRA Sizes | In | Out | |------------|------------|------------| | 050-060 | F Ø 5/8" | E Ø 7/8" | | 075-090 | F Ø 7/8" | E Ø 1 1/8" | | 120 | F Ø 7/8" | E Ø 1 3/8" | | 150 | F Ø 7/8" | E Ø 1 5/8" | | 170-190 | F Ø 1 1/8" | E Ø 1 5/8" | Manufacturer reserves the rights to change specifications without prior notice. # YCSE / YCRE Style C Water-cooled or remote air-cooled screw compressor chiller Cooling capacities from 140 kW to 250 kW ready for field installation. **YCSE** unit is pressure tested, evacuated, and fully factory charged with refrigerant R134a and oil. After assembly, an operational test is performed with water flowing through the evaporator and condenser to ensure that each refrigerant circuit operates correctly. YORK® YCSE Style C chiller is designed for water or water-glycol cooling. It is designed for indoor installation in a plant room. The unit is completely factory assembled with all interconnecting refrigerant piping and wiring Modular Concept for maximuam installation flexibility #### Features #### **Efficient screw compressors** Highly efficient the **YORK® YCSE Style C** offers the highest standard of reliability and economical operation utilizing twin-screw rotor technology and fully modulating compressor slide valve unloading, together with low inrush current star delta starters. To further improve the operating efficiency the leaving liquid temperature can be remotely reset. #### **Quiet operation** The compressor has been designed so that there is minimal external gas pulsations and integral oil separators resulting in very low sound and vibration levels. #### Small footprint The compact design is ideally suited for reduced base area locations. The unit frame is manufactured from heavy gauge galvanized steel coated with baked-on powder paint. #### **Extended Heating range (NEW)** Operating range in heat pump mode has been extended, YCSE Style C units are now able to provide heated water outlet up to 60°C when it's working as a heat pump. #### Options / Accessories - · BMS Interface (Modbus, Bacnet) - · Compressor Circuit Breaker - · Power Meter - · Heat pump sensor kit - · Evaporator Heater - · Cable Power Routing - High Leaving Evaporator temperature - · High Condenser Water and glycol options - Pressure Relief Valve (single/dual) - Dual Compressor safety valve - Suction and/or Discharge stop valves - $\cdot \ \text{Water connection flanges} \\$ - · Differential Water Pressure Switch - · Water Flow Switch and Water Filter - · Anti-vibration mounts (rubber or springs) #### Nominal capacity and technical data | Model | | YC | SE | | | YCRE | | | | | | |------------------------------|------|---------------|-----------------|-----------------------|-------------|----------------|------|--|--|--|--| | Size | 0141 | 0181 | 0221 | 0241 | 0141 | 0181 | 0221 | | | | | | Cooling Capacity (kW) * | 140 | 180 | 220 | 250 | 135 | 175 | 215 | | | | | | EER | 4.83 | 4.80 | 4.71 | 4.72 | 4.22 | 4.19 | 4.10 | | | | | | ESEER | 5.35 | 5.69 | 5.71 | 5.72 | | | | | | | | | SEER | | Most Foodosis | - Descriperante | | | Not Applicable | | | | | | | r)s, ⊂ | | Meet Ecodesig | n Requirements | | | | | | | | | | Sound power level (dBA) | 88 | 89 | 90 | 91 | 88 | 89 | 90 | | | | | | Length / Width / Height (mm) | | | Bas | e 1 378 max / 806 / 1 | 806 / 1 681 | | | | | | | | Operating weight (kg) | 860 | 950 | 1 040 | 1 075 | 765 | 835 | 900 | | | | | ^{*} YCSE: At 35°C leaving condenser liquid temperature and 7°C leaving chilled liquid temperature according to EUROVENT calculation EN14511:2011 The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects ^{*} YCRE: At 45°C condensing temperature and 7°C leaving chilled liquid temperature #### YCSE 0141 to 0241 All dimensions in mm. Drawings not a scale. #### YCRE 0141 to 0221 All dimensions in mm. Drawings not a scale. Manufacturer reserves the rights to change specifications without prior notice. # YCWL / YCRL Water-cooled or remote air-cooled scroll compressor chiller Cooling capacities from 178 kW to 596 kW Available configurations that meet A Class energy efficiency levels at Eurovent Standard Conditions. #### **Features** The **YCWL** series was designed to produce the greatest cooling capacity with the lowest sound levels. The use of scroll compressors provides optimum efficiency at part load, up to an ESEER of 7.25. Its dimensions have been optimized to pass through a doorway 2 m high by 90 cm wide. The **YCWL** is designed for all air conditioning applications. It is equipped with two independent cooling circuits and regulated by a micro-processor that optimizes chiller performance. The **YCWL** is designed for indoor installation and each **YCWL** is fully tested before leaving our factories. #### **Options** - Leaving Chilled Liquid from -12 to +15°C - Leaving Condenser Liquid from +18 to +50°C - Compressor acoustic blankets - · Flow switch or pressure differential switch - Soft starters - · Neoprene pads or spring isolators - Dual relief valves kit - · Electronic regulators - · Vibration isolators ## Water-cooled or remote air-cooled scroll compressor chiller YCWL / YCRL 0201 to 0611 #### Nominal capacity | YCWL-SE | 0292 | 0343 | 0396 | |-------------------------------------|------|------|------| | Cooling capacity (kW) ¹ | 294 | 334 | 371 | | EER ¹ | 4.72 | 4.69 | 4.71 | | SEER | 5.92 | 5.90 | 6 | | ŋs, c | 229 | 228 | 232 | | Sound Pressure (dB(A)) ² | 72 | 74 | 76 | | YCWL-HE | 0201 | 0231 | 0261 | 0302 | 0347 | 0426 | 0447 | 0532 | 0611 | |-------------------------------------|------|------|------|------|------|------|------|------|------| | Cooling capacity (kW) ¹ | 191 | 219 | 244 | 308 | 353 | 411 | 444 | 498 | 595 | | EER ¹ | 5.52 | 5.91 | 6.48 | 6.22 | 6.06 | 6.25 | 5.97 | 6.18 | 5.88 | | SEER | 213 | 228 | 251 | 241 | 234 | 242 | 231 | 239 | 227 | | ŋs, c | 5.97 | 6.33 | 7.25 | 6.79 | 6.54 | 6.70 | 6.28 | 6.80 | 6.57 | | Sound Pressure (dB(A)) ² | 68 | 70 | 72 | 72 | 74 | 76 | 74 | 71 | 72 | | YCRL-HE | 0201 | 0231 | 0261 | 0302 | 0347 | 0386 | 0447 | 0532 | 0611 | |-------------------------------------|------|------|------|------|------|------|------|------|------| | Cooling capacity (kW) ³ | 178 | 207 | 233 | 273 | 325 | 356 | 415 | 485 | 556 | | EER ³ | 4.00 | 4.00 | 4.12 | 4.20 | 4.16 | 4.11 | 4.17 | 4.06 | 3.99 | | Sound Pressure (dB(A)) ² | 64 | 65 | 67 | 67 | 70 | 68 | 69 | 71 | 73 | ^{1:} Cooling capacity and efficiancies @ Eurovent conditions evaporator entering/leaving temperature 12C/7C condenser entering/leaving temperature 30/35C EN14511:2011. #### Technical data Height Operating weight mm 1438 1309 1481 1481 1471 1471 | YCWL-SE | | | | 0292 | | | 0343 | | | 0396 | | |-----------------|--------|----|------|------|------|------|------|------|------|------|------| | | Length | mm | | 3161 | | 3169 | | | 3159 | | | | Dimensions | Width | mm | | | | 859 | | | | | | | | Height | mm | | 1830 | | | | 18 | 19 | | | | Operating weigh | t | kg | | 2481 | | | 2494 | | | 2716 | | | YCWL-HE | | | 0201 | 0231 | 0261 | 0302 | 0347 | 0426 | 0447 | 0532 | 0611 | | | Length | mm | 3161 | 3098 | 3154 | 3169 | 3132 | 3133 | | 3643 | | | Dimensions | Width | mm | 859 | 857 | 844 | 8 | 59 | 859 | | 885 | | | | Height | mm | 1670 | 1914 | 1820 | 1819 | 1889 | 1889 | 1946 | 19 | 65 | | Operating weigh | t | kg | 2218 | 2512 | 2463 | 2481 | 2808 | 2824 | 3632 | 3838 | 3999 | | | | | | | | | | | | | | | YCRL-HE | | | 0201 | 0231 | 0261 | 0302 | 0347 | 0386 | 0447 | 0532 | 0611 | | | Length | mm | 3086 | 3061 | 30 |)76 | 3061 | 3617 | | 3576 | | | Dimensions | Width | mm | 826 | 856 | 84 | 43 | 856 | | 965 | | 902 | 1593 1593 1683 1682 1641 1947 1638 2266 1641 2263 ^{2:} EN 292-1991 Sound pressure is mesured 1 meter away from the control panel and 1.5 meters above the floor. 3: Cooling capacity and efficiancies @ Eurovent conditions evaporator entering/leaving
temperature 12C/TC saturated discharge temperature 45C EN14511:2007. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. YCWL0292SE, YCWL0343SE, YCWL0396SE, YCWL0201HE, YCWL0231HE, YCWL0361HE, YCWL0302HE, YCWL0347HE, YCWL0426HE, YCWL0447HE | YCWL | 0292SE | 0343SE | 0396SE | 0201HE | 0231HE | 0261HE | 0302HE | 0347HE | 0426HE | 0447HE | |-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Dimension | mm | Α | 368 | 368 | 368 | 368 | 368 | 368 | 368 | 368 | 368 | 381 | | В | 737 | 737 | 737 | 737 | 737 | 737 | 737 | 737 | 737 | 762 | | С | 299 | 394 | 394 | 299 | 407 | 394 | 394 | 406 | 406 | 406 | | D | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 69 | | E | 1830 | 1819 | 1819 | 1670 | 1914 | 1820 | 1819 | 1889 | 1889 | 1946 | | F | 1638 | 1714 | 1714 | 1638 | 1753 | 1714 | 1714 | 1753 | 1753 | 1778 | | G | 901 | 977 | 978 | 901 | 1016 | 977 | 977 | 1016 | 1016 | 1041 | | Н | 737 | 737 | 737 | 737 | 737 | 737 | 737 | 737 | 737 | 737 | | J | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | | K | 450 | 450 | 450 | 311 | 450 | 450 | 450 | 450 | 450 | 450 | | L | 311 | 311 | 311 | 311 | 324 | 311 | 311 | 324 | 324 | 452 | | М | 859 | 859 | 859 | 859 | 857 | 844 | 859 | 859 | 859 | 885 | | N | 3161 | 3169 | 3159 | 3161 | 3098 | 3154 | 3169 | 3132 | 3133 | 3643 | | 0 | 1163 | 1171 | 1155 | 1163 | 1100 | 1156 | 1171 | 1134 | 1133 | 1334 | | Р | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | 1270 | | Q | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 264 | | R | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 251 | 264 | | S | 1080 | 1080 | 1080 | 1080 | 1054 | 1080 | 1080 | 1054 | 1054 | 1295 | | T | 1080 | 1080 | 1080 | 1080 | 1054 | 1080 | 1080 | 1054 | 1054 | 1295 | | U | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1598 | | ٧ | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1293 | 1598 | | W | 1445 | 1445 | 1455 | 1445 | 1445 | 1445 | 1445 | 1455 | 1455 | 1774 | | Х | 813 | 813 | 813 | 813 | 845 | 813 | 813 | 845 | 845 | 921 | | Υ | 181 | 181 | 207 | 181 | 181 | 181 | 181 | 207 | 207 | 219 | | Z | 210 | 210 | 197 | 210 | 210 | 210 | 210 | 197 | 197 | 216 | | ZZ | 130 | 130 | 133 | 130 | 130 | 130 | 130 | 133 | 133 | 132 | | EE Ø | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 38 | 51 | | YCWL | 0292SE | 0343SE | 0396SE | 0201HE | 0231HE | 0261HE | 0302HE | 0347HE | 0426HE | 0447HE | |-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Water Connections | in | AA Ø | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | | BB Ø | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | | CC Ø | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 8 | 8 | 8 | | DD Ø | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 8 | 8 | 8 | #### YCWL0532HE | YCWL | 0532HE | |-----------|--------| | Dimension | mm | | Α | 381 | | В | 762 | | С | 406 | | D | 69 | | E | 1965 | | F | 1778 | | G | 1041 | | Н | 737 | | J | 25 | | K | 450 | | L | 452 | | M | 885 | | N | 3643 | | 0 | 1334 | | P | 1270 | | Q | 263 | | R | 263 | | S
T | 1295 | | | 1295 | | U | 1598 | | V | 1598 | | W | 1774 | | Х | 921 | | Υ | 219 | | Z | 216 | | ZZ | 132 | | EE Ø | 51 | All dimensions in mm. | YCWL | 0532HE | |-------------------|--------| | Water Connections | in | | AA Ø | 5 | | BB Ø | 5 | | CC Ø | 8 | | DD Ø | 8 | #### YCWL0611HE | YCWL | 0611HE | |-----------|--------| | Dimension | mm | | Α | 381 | | В | 762 | | С | 406 | | D | 69 | | E | 1965 | | F | 1778 | | G | 1041 | | Н | 737 | | J | 25 | | K | 450 | | L | 452 | | M | 885 | | N | 3643 | | 0 | 1334 | | P | 1270 | | Q | 264 | | R | 264 | | S | 1295 | | T | 1295 | | U | 1598 | | V | 1598 | | W | 1774 | | Х | 921 | | Υ | 219 | | Z | 216 | | ZZ | 132 | | EE Ø | 51 | All dimensions in mm. | YCWL | 0611HE | |-------------------|--------| | Water Connections | in | | AA Ø | 5 | | BB Ø | 5 | | CC Ø | 8 | | DD Ø | 8 | #### YCRL 0201 HE to YCRL 0347 HE | YCRL | 0201 HE | 0231 HE | 0261 HE | 0302 HE | 0347 HE | |------|---------|---------|---------|---------|---------| | w | 824 | 834 | 834 | 834 | 846 | | Н | 1437 | 1616 | 1546 | 1544 | 1613 | | L | 3085 | 3062 | 3082 | 3082 | 3062 | | Α | 349 | 349 | 349 | 349 | 349 | | В | 699 | 692 | 699 | 699 | 699 | | D | 299 | 407 | 394 | 394 | 407 | | E | 219 | 219 | 168 | 168 | 219 | | F | 622 | 737 | 699 | 699 | 737 | | G | 737 | 737 | 737 | 737 | 737 | | J | 450 | 450 | 450 | 450 | 450 | | K | 311 | 324 | 311 | 311 | 324 | | М | 311 | 311 | 311 | 311 | 311 | | N | 311 | 311 | 311 | 311 | 311 | | R | 2159 | 2108 | 2159 | 2159 | 2108 | | S | 89 | 114 | 89 | 89 | 114 | | T | 2965 | 2938 | 2965 | 2965 | 2938 | | U | 628 | 601 | 628 | 628 | 601 | | Х | 533 | 565 | 533 | 533 | 565 | | AA | 533 | 533 | 533 | 533 | 533 | | BB | 1270 | 1270 | 1270 | 1270 | 1270 | | СС | 343 | 343 | 343 | 343 | 356 | | DD | 780 | 838 | 769 | 769 | 838 | | EE | 2059 | 2085 | 1999 | 1999 | 2008 | | FF | 947 | 886 | 875 | 875 | 883 | | GG | 1003 | 1003 | 1003 | 965 | 1040 | | HH | 466 | 375 | 375 | 375 | 378 | #### YCRL 0386 HE to YCRL 0611 HE | YCRL | 0386 HE | 0447 HE | 0532 HE | 0611 HE | |------|---------|---------|---------|---------| | W | 1030 | 1030 | 965 | 902 | | Н | 1641 | 1628 | 1641 | 1641 | | L | 3633 | 3576 | 3576 | 3576 | | Α | 349 | 349 | 349 | 349 | | В | 699 | 692 | 699 | 699 | | D | 406 | 407 | 407 | 407 | | E | 219 | 219 | 219 | 219 | | F | 711 | 711 | 711 | 711 | | G | 737 | 737 | 737 | 737 | | J | 450 | 450 | 450 | 450 | | K | 452 | 452 | 452 | 452 | | M | 311 | 311 | 311 | 311 | | N | 311 | 311 | 311 | 311 | | R | 2591 | 2591 | 2591 | 2591 | | S | 178 | 178 | 178 | 178 | | Т | 3509 | 3449 | 3449 | 3449 | | U | 563 | 502 | 502 | 502 | | Χ | 591 | 591 | 592 | 587 | | AA | 832 | 832 | 832 | 832 | | BB | 1270 | 1270 | 1270 | 1270 | | CC | 387 | 387 | 387 | 387 | | DD | 859 | 859 | 859 | 859 | | EE | 2499 | 2575 | 2575 | 2575 | | FF | 919 | 995 | 995 | 995 | | GG-1 | 1466 | 1171 | 1171 | 1171 | | GG-2 | 1466 | 1364 | 1364 | 1364 | | HH-1 | 378 | 383 | 383 | 383 | | HH-2 | 378 | 379 | 379 | 379 | # YLCS Water-cooled or remote air-cooled screw compressor chiller Heat pump application Cooling capacities from 342 kW to 1099 kW Available configurations that meet A Class energy efficiency levels at Eurovent Standard Conditions. #### **Features** #### One chiller, many applications Designed to operate with leaving liquid temperature from -12°C to +15°C. #### **Efficient compressors** **YLCS** is a dual circuit chiller with industrial type semi-hermetic screw compressors. Star delta compressor starters are incorporated to reduce the inrush current. #### **Outstanding chiller control** An advanced microprocessor controller with, a 40 character plain language display, controls and monitors temperatures, pressures, operating hours, number of starts and start stop/holiday times. #### Fast and easy installation Evaporator water connections can be provided in a vertical or horizontal plain. Electrical power supplies enter from the top for easy drop down wiring. #### **Options / Accessories** - · Compressor suction shut-off valves - Companion flange kits - Multi-point power supply - · Remote leaving liquid temperature offset - Pressure gauges - · Closed transition star delta starters - · Power factor correction capacitors - \cdot Heat pump control up to 60°C - · 90/10 cupro/nickel condenser # Water-cooled or remote air-cooled screw compressor chiller YLCS 0350 to 1120 #### Nominal capacity | YLCS | 0350 | 0415 | 0480 | 0530 | 0575 | 0620 | |-----------------------------|-------|-------|-------|-------|-------|-------| | Cooling capacity (kW) | 343.5 | 406 | 482.6 | 512.6 | 552.8 | 586.8 | | EER | 4.01 | 4.1 | 4.14 | 4.16 | 4.14 | 4.14 | | ESEER | 4.41 | 4.63 | 4.68 | 4.76 | 4.67 | 4.75 | | Sound pressure at 1 m (dBA) | 74 | 74 | 74 | 77 | 76 | 76 | | YLCS | 0670 | 0750 | 0860 | 0980 | 1120 | | | Cooling capacity (kW) | 644 | 744.3 | 867.3 | 979.9 | 1122 | • | | EER | 4.53 | 4.61 | 4.73 | 4.72 | 4.72 | | | ESEER | 5.05 | 5.17 | 5.17 | 5.12 | 5.06 | | | Sound pressure at 1 m (dBA) | 76 | 76 | 82 | 82 | 82 | | At 7°C leaving chilled water and 35°C leaving condenser water. #### Technical data | YLCS | | | 0350 | 0415 | 0480 | 0530 | 0575 | 0620 | | |---------------------|--------|----|------|------|------|------|------|------|--| | | Length | mm | 3225 | 3244 | 3274 | | 3544 | 3600 | | | Dimensions | Width | mm | | 900 | | | | | | | | Height | mm | | | 21 | 00 | | | | | Operating weight kg | | | 3420 | 4030 | 4170 | 4270 | 4370 | 4540 | | | YLCS | | | 0670 | 0750 | 0860 | 0980 | 1120 | | | | | Length | mm | 3565 | 3645 | 3830 | 3830 | 3830 | | | | Dimensions Width mm | | | | 1290 | | | | | | | | Height | mm | | 2148 | | | | | | | Operating weight kg | | | 4510 | 5010 | 5620 | 6090 | 6610 | | | The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. #### YLCS 0350SA/HA to 0620SA/HA | Model | Α | В | С | D | Е | F | G1 ⁽¹⁾ | G2 ⁽¹⁾ | Н | J | K | L | М | N | P | Ó | R1 | R2 ⁽²⁾ | S | Т | U | ٧ | W | |-----------------|-----|-----|------|-----|-----|-----|-------------------|-------------------|------|-----|-----|-----|-----|-----|------|------|-----|-------------------|------|------|------|-----|----| | 350-SA & 350-HA | 247 | 417 | 2250 | 558 | 605 | 285 | 1914 | 1550 | 1033 | 963 | 200 | 270 | 550 | 620 | 3225 | 2100 | 890 | 967 | 1010 | 1090 | 2225 | 155 | 60 | | 415-SA & 415-HA | 247 | 417 | 2250 | 558 | 605 | 285 | 1915 | 1550 | 1013 | 903 | 180 | 290 | 530 | 640 | 3244 | 2100 | 890 | 967 | 1010 | 1090 | 2225 | 155 | 60 | | 480-SA & 480-HA | 277 | 440 | 2200 | 634 | 605 | 285 | 2016 | 1615 | 1013 | 903 | 180 | 290 | 530 | 640 | 3274 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | | 530-SA & 530-HA | 277 | 440 | 2200 | 634 | 605 | 285 | 2016 | 1615 | 1013 | 903 | 180 | 290 | 530 | 640 | 3274 | 2100
 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | | 575-SA & 575-HA | 550 | 210 | 2700 | 634 | 605 | 285 | 2016 | 1615 | 1013 | 903 | 180 | 290 | 530 | 640 | 3544 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | | 620-SA & 620-HA | 550 | 210 | 2700 | 690 | 605 | 285 | 2016 | 1615 | 1013 | 903 | 180 | 290 | 530 | 640 | 3600 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | All dimensions in mm. Drawings not a scale. Dimensions exclude insulation and options. Refer to Physical Data Section for connection sizes. For reference only, please refer to York Product drawing for complete drawing. (1) With Vertical nozzle cooler only. (2) With horizontal nozzle cooler only. #### YLCS 0350AA to 0620AA | Model | Α | В | С | D | E | F | G1 ⁽¹⁾ | G2 ⁽¹⁾ | Н | ı | J | K | L | M | N | P | Q | R1 | R2 ⁽²⁾ | S | Т | U | ٧ | W | |--------|-----|-----|------|-----|-----|-----|-------------------|-------------------|-----|-----|-----|------|-----|-----|------|------|------|-----|-------------------|------|------|------|-----|----| | 350-AA | 247 | 417 | 2250 | 558 | 605 | 285 | 1914 | 1550 | 761 | 140 | 573 | 1032 | 538 | 140 | 1200 | 3225 | 2100 | 890 | 967 | 1010 | 1090 | 2225 | 155 | 60 | | 415-AA | 247 | 411 | 2250 | 583 | 605 | 285 | 1915 | 1550 | 761 | 140 | 573 | 1032 | 538 | 140 | 1204 | 3244 | 2100 | 890 | 967 | 1010 | 1090 | 2225 | 155 | 60 | | 480-AA | 277 | 440 | 2200 | 634 | 605 | 285 | 2016 | 1615 | 761 | 140 | 573 | 1087 | 538 | 140 | 1204 | 3274 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | | 530-AA | 277 | 440 | 2200 | 634 | 605 | 285 | 2016 | 1615 | 761 | 140 | 573 | 1087 | 538 | 140 | 1200 | 3274 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | | 575-AA | 550 | 210 | 2700 | 634 | 605 | 285 | 2016 | 1615 | 761 | 140 | 573 | 1087 | 538 | 140 | 1204 | 3544 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | | 620-AA | 550 | 210 | 2700 | 690 | 605 | 285 | 2016 | 1615 | 761 | 140 | 573 | 1087 | 538 | 140 | 1204 | 3600 | 2100 | 890 | 1010 | 1010 | 1090 | 2225 | 155 | 60 | All dimensions in mm. Drawings not a scale. Dimensions exclude insulation and options. Refer to Physical Data Section for connection sizes. For reference only, please refer to York Product drawing for complete drawing. (1) With Vertical nozzle cooler only. (2) With horizontal nozzle cooler only. #### YLCS 0670SA/HA - 0750SA/HA All dimensions in mm. Drawings not a scale. Dimensions exclude insulation and options. Refer to Physical Data Section for connection sizes. For reference only, please refer to York Product drawing for complete drawing. (1) With Vertical nozzle cooler only. (2) With horizontal nozzle cooler only. #### YLCS 0860SA/HA to 1120SA/HA | Model | Α | В | C | ט | E | r | G | н | J | K | L | IVI | N | Р | Ó | ĸ | 5 | ı | U | V | VV | |-------------------|-----|------|------|------|-----|-----|------|------|-----|-----|-----|-----|------|------|------|------|------|------|------|------|----| | 860-SA & 860-HA | 517 | 780 | 2175 | 930 | 720 | 370 | 1641 | 1003 | 873 | 160 | 290 | 800 | 930 | 3885 | 2080 | 1090 | 1270 | 1406 | 2491 | 1136 | 90 | | 980-SA & 980-HA | 668 | 930 | 2175 | 930 | 720 | 370 | 1641 | 1003 | 873 | 160 | 290 | 800 | 930 | 4036 | 2080 | 1090 | 1270 | 1406 | 2491 | 1126 | 90 | | 1120-SA & 1120-HA | 668 | 1025 | 2010 | 1000 | 835 | 455 | 1721 | 1045 | 915 | 211 | 341 | 950 | 1080 | 4036 | 2144 | 1290 | 1470 | 1606 | 2491 | 1295 | 90 | All dimensions in mm. Drawings not a scale. Dimensions exclude insulation and options. Refer to Physical Data Section for connection sizes. For reference only, please refer to York Product drawing for complete drawing. #### YLCS 0670AA - 0750AA All dimensions in mm. Drawings not a scale. Dimensions exclude insulation and options. Refer to Physical Data Section for connection sizes. For reference only, please refer to York Product drawing for complete drawing. (1) With Vertical nozzle cooler only. (2) With horizontal nozzle cooler only. #### YLCS 0860AA to 1120AA | Model | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | N | Р | Ó | R | S | Т | U | ٧ | W | |---------|-----|------|------|------|-----|-----|------|-----|-----|------|------|-----|-----|------|------|------|------|------|------|------|------|----| | 860-AA | 517 | 780 | 2175 | 930 | 720 | 370 | 1641 | 577 | 175 | 915 | 1238 | 910 | 365 | 1200 | 3885 | 2080 | 1090 | 1270 | 1406 | 2491 | 1136 | 90 | | 980-AA | 668 | 930 | 2175 | 930 | 720 | 370 | 1641 | 577 | 175 | 915 | 1238 | 910 | 365 | 1200 | 4036 | 2080 | 1090 | 1270 | 1406 | 2491 | 1126 | 90 | | 1120-AA | 668 | 1025 | 2010 | 1000 | 835 | 455 | 1721 | 577 | 275 | 1015 | 1407 | 785 | 246 | 963 | 4036 | 2144 | 1290 | 1470 | 1606 | 2491 | 1295 | 90 | All dimensions in mm. Drawings not a scale. Dimensions exclude insulation and options. Refer to Physical Data Section for connection sizes. For reference only, please refer to York Product drawing for complete drawing. ## YVWA Water-cooled VSD screw chiller #### Cooling capacities from 451 kW to 1403 kW At Eurovent Standard Conditions this equipment meets A Class energy efficiency levels. Compatible range #### **Features** Our newest water-cooled chiller offers the following benefits: #### Premium efficiency The **YVWA** reduces operating expenses with the application of a standard variable speed drive. #### Application flexibility Tailor and tune flexilibilty makes the **YVWA** ideal for any application from thermal storage to heat pump duty. #### **Enhanced sustainability** Achieved through high efficiency operation and low refrigerant charges. #### **Product confidence** Improve your peace of mind knowing our experience stands behind every chiller. #### **Options / Accessories** - · BMS Interfacing options - Different options of tubes and nozzle arrangements for the heat exchangers. - · Dual pressure relief valve - Several options for flow switches - Thermal insulation options - · Anti-vibration mounts options Reduce refrigerant charges by up to 15% beyond traditoinal chiller designs with the YVWA's falling film evaporator design. The YVWA chiller can efficiently handle the high condenser pressure required for dry cooling Photo courtesy of the LTCM lab of the Ecole Polytechnique Fédérale de Lausanne, Switzerland ### Water-cooled VSD screw chiller #### YVWA #### Application flexibility (*) example of selections | Model | YVWABBBBFX | YVWACDCDFX | YVWABBBBGX | YVWACDCDGX | YVWAM2M2EE | YVWAM2MCEE | YVWAMBMCEE | |-----------------------|------------|------------|------------|------------|------------|------------|------------| | Cooling capacity (kW) | 451 | 525 | 575 | 650 | 700 | 750 | 800 | | EER 100% | 5 | 5.41 | 4.72 | 5.14 | 4.81 | 5.13 | 5.3 | | SEER | 6.68 | 7.05 | 6.79 | 7.46 | 6.49 | 6.83 | 7.08 | | ns, c | 259 | 274 | 264 | 291 | 251 | 265 | 275 | | Model | YVWAMDMCFE | YVWAMDMDFE | YVWAMDMEFE | YVWAMEMEFF | YVWANENEFF | YVWAUDUDGF | YVWAUEUEGG | |-----------------------|------------|------------|------------|------------|------------|------------|------------| | Cooling capacity (kW) | 850 | 900 | 950 | 1000 | 1070 | 1224.0 | 1403 | | EER 100% | 5.39 | 5.35 | 5.32 | 5.3 | 5.33 | 5.5 | 5.43 | | SEER | 7.15 | 7.20 | 7.30 | 7.23 | 7.25 | 7.63 | 7.69 | | ŋs, c | 278 | 280 | 284 | 281 | 282 | 297 | 300 | Net values at Eurovent nominal conditions for models using R134a: Cooling capacities in kW given for entering / leaving chilled water temperature 12/7 °C condenser water 30/35 °C SEER calculated according to EN14511 ηs calculated according to Ecodesign regulation for chillers comfort cooling (813/2013). For other Ecodesign calculations, please contact your JCI representative. The table above shows only a representative sample of performance points based on generic project operating conditions working with R134a refrigerant. For R513a information contact your JCI Representative. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects #### Technical data | Model | | | YVWABBBBFX | YVWACDCDFX | YVWABBBBGX | YVWACDCDGX | YVWAM2M2EE | YVWAM2MCEE | YVWAMBMCEE | |-----------------|-------------|----|------------|------------|------------|------------|------------|------------|------------| | Compressors / | Circuite(s) | | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | | Length | mm | 3110 | 3571 | 3110 | 3720 | 4390 | 4390 | 4390 | | Dimensions | Width | mm | 1413 | 1413 | 1413 | 1413 | 1405 | 1405 | 1405 | | | Height | mm | 1846 | 1846 | 1846 | 1846 | 1824 | 1824 | 1824 | | Operating weig | sht (kg) | | 3692 | 4169 | 3822 | 4299 | 5701 | 5884 | 6032 | | Refrigerant cha | rge (kg) | | 127 | 153 | 137 | 163 | 250 | 250 | 250 | | Model | | | YVWAMDMCFE | YVWAMDMDFE | YVWAMDMEFE | YVWAMEMEFF | YVWANENEFF | YVWAUDUDGF | YVWAUEUEGG | |-----------------|-------------|----|------------|------------|------------|------------|------------|------------|------------| | Compressors / | Circuite(s) | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Length | mm | 4390 | 4390 | 4390 | 4390 | 5000 | 4875 | 4875 | | Dimensions | Width | mm | 1405 | 1405 | 1405 | 1405 | 1405 | 1730 | 1730 | | | Height | mm | 1824 | 1824 | 1824 | 1824 | 1824 | 1999 | 1999 | | Operating weig | ght (kg) | | 6265 | 6315 | 6421 | 6540 | 7052 | 9393 | 9746 | | Refrigerant cha | rge (kg) | | 255 | 255 | 255 | 260 | 300 | 430 | 440 | #### YVWA Efficiency vs. Ordinary Chiller The YVWA chiller delivers superior energy performance at all operating hours. #### YVWA Energy Cost vs. Ordinary Chiller Note: 3,500 operating hours, 0.10 EUR/kWh energy rate, 800 kW design cooling load An investment in an optimized YVWA chiller reduces energy costs by 25%. Manufacturer reserves the rights to change specifications without prior notice. ^(*) The taylor and tune models allow over 7000 component combinations in stepless selection capacities / operating conditions. Specific selections may achieve an operating envelope of -10 to + 16 °C evaporator liquid and from 18 to 65 °C condenser liquid. Models are
using selected components from the quick ship program. #### YVWA B models All dimensions in mm. Drawings not a scale. #### YVWA C models #### YVWA M models All dimensions in mm. Drawings not a scale. #### YVWA N models # YZ Magnetic bearing centrifugal chiller Cooling capacities from 581 kW to 3516 kW At Eurovent Standard Conditions this equipment meets A Class energy efficiency levels. The YORK® YZ Magnetic Bearing Centrifugal Chiller is a revolutionary advancement that challenges everything about conventional chiller design. Built upon decades of industry-leading chiller expertise, our engineers questioned every component, analyzed every function and challenged every assumption. The result is the first chiller fully optimized for ultimate performance with a next generation low-GWP (global warming potential) refrigerant, delivering superior real-world performance, lower cost of ownership and a new definition of sustainability. It's the first chiller built to exceed every expectation – today and tomorrow. The design premise for the **YORK® YZ** was simple: Don't just make a new chiller – make the best chiller for our customers. This was accomplished through a holistic approach to system design and engineering, optimizing every component around a carefully selected next generation refrigerant for ultimate performance. #### Magnetic Driveline Superiority The YORK® YZ uses an integral, variable–speed drive and advanced magnetic bearing technology to deliver extraordinary efficiency, superior durability, simplified maintenance and a wider operating envelope than any chiller using oil- or refrigerant–lubricated compressor bearings. This driveline features a single moving assembly suspended in a magnetic field that does not require lubrication. With 80% fewer moving parts than traditional oil- or refrigerant–lubricated drivelines, longevity is enhanced and maintenance is reduced. # Magnetic bearing centrifugal chiller #### **Proven Firsts** Groundbreaking YORK® innovations refined over decades of real-world use have been brought together to create a revolution in chiller design and optimization. It's everything we've learned to-date, and then some. #### Variable-Speed Drive: Four decades ago, YORK® introduced the first variable-speed drive (VSD) chiller. And we've since installed more VSD chillers than all other manufacturers combined. A VSD is standard on the YORK® YZ. #### **Magnetic Bearing Driveline:** In 1998, YORK® Navy Systems pioneered reliable magnetic-bearing technology to cool submarines. The same durable and efficient technology is used on the YORK® YZ. ## High-Speed Hermetic Induction Motor: YORK® was the first to combine low-maintenance, hermetically-sealed induction motors with variable-speed drives in 2004 to directly drive the compressors in air-cooled chillers. The YORK® YZ builds on this reliable, proven technology to power our latest generation of centrifugal compressors. #### **Optimized Compressor:** An optimized, single-stage design enables YORK® chillers to provide the best possible real-world energy efficiency. YORK® YZ compressors also lead the industry with the widest operating range at off-design conditions where systems most often operate. #### **Low-Pressure Chiller:** For most of the past century, the YORK® centrifugal chiller portfolio has offered low-pressure refrigerants to deliver high-efficiency chillers. The YORK® YZ is designed to maximize the efficiency of a new, low-GWP, low-pressure refrigerant. ## OptiView™ Control Panel with Connected Service: The full-color, interactive OptiView™ control panel of the YORK® YZ offers over 100 setpoints, readouts, alerts and trending reports. In addition, data can be securely connected to the cloud-based analytics platform for remote monitoring and predictive diagnostics – another innovation first brought to you in YORK® chillers. #### **Falling Film Evaporator:** The YORK®-patented falling film design of the YORK® YZ reduces refrigerant charge up to 60%, and reduces evaporator shell size up to 20%, compared to other flooded, low-pressure refrigerant designs. The YORK® patented falling film design also eliminates the need for a refrigerant pump. #### **Capacity Control Logic:** This patented YORK® control technology provides rapid response to the load on the building, ensuring the YORK® YZ Chiller does not waste energy or work harder than needed. Manufacturer reserves the rights to change specifications without prior notice. # YMC² Water-cooled magnetic centrifugal chiller Cooling capacities from 800 kW to 3600 kW At Eurovent Standard Conditions this equipment meets A Class energy efficiency levels. Compatible range #### **Features** Our most advanced water-cooled chiller offers the following benefits: #### **Enhanced efficiency** Achieved through application of active magnetic bearing technology with variable speed drive. #### **Enhanced sustainability** Achieved by leak free refrigerant design, lower refrigerant charge and falling film evaporator. #### Low sound levels Advanced technology results in sound levels as low as 75dBA. #### Superior reliability Use of active magnetic bearing technology removes friction and the need for oil resulting in a quieter and more reliable chiller. A falling-film evaporator is more efficient because refrigerant is sprayed over the tubes, offering improved heat transfer and reducing refrigerant charge by 30%. To eliminate mechanical-contact losses in the driveline, the YMC2 chiller utilises a permanent-magnet motor and active magnetic-bearing technology. ## Water-cooled magnetic centrifugal chiller YMC² S0800AA to S3600AB #### Nominal capacity (*) | YMC ² | S0800AA | S1000AA | S1200AB | S1400AA | S1600AB | S1800AB | S2000AB | |-----------------------------|---------|---------|---------|---------|---------|---------|---------| | T IVIC- | 30600AA | 31000AA | 31200AB | 31400AA | 31000AD | 31000AD | SZUUUAD | | Cooling capacity (kW) | 800 | 1000 | 1200 | 1400 | 1600 | 1800 | 2000 | | EER | 6.06 | 6.13 | 6.32 | 6.33 | 6.31 | 6.07 | 6 | | SEER | 7.58 | 7.83 | 7.92 | 8.34 | 8.59 | 7.83 | 8.16 | | r)s, c | 295 | 305 | 309 | 326 | 335 | 305 | 318 | | Sound pressure at 1 m (dBA) | 77 | 77 | 76 | 76 | 77 | 79 | 80 | | YMC ² | S2200AB | S2400AB | S2600AB | S2800AB | S3000AB | S3200AB | S3400AB | S3600AB | |-----------------------------|---------|---------|---------|---------|---------|---------|---------|---------| | Cooling capacity (kW) | 2200 | 2400 | 2600 | 2800 | 3000 | 3200 | 3400 | 3600 | | EER | 6.2 | 6.25 | 6.1 | 6.15 | 6.2 | 6.2 | 6.1 | 6.1 | | Sound pressure at 1 m (dBA) | 81 | 82 | 82 | 82 | 82 | 82 | 83 | 83 | Cooling Capacity at Eurovent Conditions, entering/leaving chilled water temperature 12°C/7°C, entering/leaving condenser water temperature 30°C/35°C (*) YMC² is a tailor and tune chiller. Its peformance will be factory-adjusted to match the exact site requirements based on the specific project operating. The table above shows only a representative sample of performance points based on generic project operating conditions working with R134a refrigerant. For R513a information contact your JCI Representative. The above data is based on Johnson Control's selection software YORKworks 17.06. Please refer to the latest version of the software for specific projects. #### Technical data | YMC ² | | | S0800AA | S1000AA | S1200AB | S1400AA | S1600AB | S1800AB | S2000AB | |-------------------|---------|----|---------|---------|---------|---------|---------|---------|---------| | | Length | mm | | | 3048 | | | 42 | 67 | | Dimensions | Width | mm | | 18 | 80 | | 2007 | | | | | Height | mm | | 24 | 2499 | 25 | 73 | | | | Shipping weight | (kg) | | 51 | 71 | 58 | 10 | 6579 | 78 | 09 | | Refrigerant charg | ge (kg) | | 278 | 280 | 423 | 454 | 445 | 612 | 656 | | YMC ² | | | S2200AB | S2400AB | S2600AB | S2800AB | S3000AB | S3200AB | S3400AB | S3600AB | |-------------------|--------|----|-----------|---------|---------|---------|---------|---------|---------|---------| | | Length | mm | | 51 | 54 | | | 50 | 54 | | | Dimensions | Width | mm | 2007 2235 | | | | | | | | | | Height | mm | | 25 | 73 | | | 26 | 56 | | | Shipping weight | (kg) | | 10095 | 10161 | 10255 | 10432 | 11500 | 11669 | 12048 | 12254 | | Refrigerant charg | | | 667 | 666 | 658 | 647 | 766 | 760 | 750 | 750 | - 1. All dimensions are approximate. Certified dimensions are available on request. - 2. Refrigerant charge quantity and shipping weights will vary based on tube count. - 3. Shipping weights are based on fully assembled and charged units. - 4. Refer to product drawings for detailed weight information. #### Superior sound reduction A-Weighted sound pressure level (dBA (re: 20μPa)) Measured in accordance with AHRI-575 The YMC² chiller is so much quieter than competitive magnetic-bearing chillers, it sounds about half as loud. *Note: each segment on the Y axis = $5 \, \text{dBA}$. #### OptiView control centre The OptiView control centre provides complete diagnostics to speed troubleshooting. Manufacturer reserves the rights to change specifications without prior notice. # YK Water-cooled centrifugal chiller Cooling capacities from 800 kW to 11250 kW Available configurations that meet A Class energy efficiency levels at Eurovent Standard Conditions. Compatible range #### **Features** - The YORK YK chiller is designed for air conditioning and process applications. - The high efficiency single-stage centrifugal compressor is powered by an open-drive motor. This provides flexibility to operate the chiller with electricity, steam, or gas depending on utility rates. - The YK utilizes a falling film evaporator to increase chiller efficiency and reduce refrigerant charges, which makes it ideal for LEED® building applications. - This chiller is designed for indoor mechanical room installation and it requires a cooling tower for heat dissipation - The inherent design flexibility of this chiller allows it to be precisely selected for any building load
profile. OptiView panel Speed comparison # Water-cooled centrifugal chiller ## Nominal capacity | Model | Code | Cooling capacity kW | |-------|---------|---------------------| | | Q3 - Q7 | 800 - 2100 | | YK | P7 - P9 | 1750 - 2800 | | TK. | H9 | 2400 - 3800 | | | K1 - K7 | 3200 -9850 | | YK-EP | K7 & Q3 | 8800 - 11250 | Cooling capacities at 7°C leaving chilled water and 30 °C entering condensed water. The table above shows only a representative sample of performance points based on generic project operating conditions working with R134a refrigerant. For R513a information contact your JCI Representative. # **Heat Recovery** The YK Heat Recovery option can be used for domestic hot water preheat, process heat, facility air reheat, and humidity control. Heat recovery delivers operational savings, CO2 reductions, and reduced water consumption. ## Medium Voltage Variable Speed Drive YORK has a full line of unit mounted and floor mounted Variable Speed Drives, from 380V to 11,000V, to maximize operational savings at off design conditions; which typically occur 99% of the time! ## Quick Start (only available for VSD units) Utilize Quick Start technology to improve chiller starting times and get back to setpoint up to 70% faster than standard chiller designs! # YHAU CL Single stage hot water driven absorption chiller Cooling capacities from 105 kW to 6153 kW ## **Features** ### Flexible Operating Envelope The **YORK YHAU-CL** Single Effect Hot Water absorption chiller provides efficiency and reliability through the use of innovative technology that is optimized to use low temperature waste heat – as low as 70°C where competitive offerings cannot operate. Common applications include comfort or industrial process cooling that use or recover waste heat from combined heat and power (CHP) systems, industrial process or other available heat sources. The **YHAU-CL** cooling capacity ranges from 105-6,153 kW / 30-1,750 TR. The YHAU-CL has the unique ability to be used for applications where the - · Chilled water leaving temperature as low as 4C. - Cooling water temperature entering temperature as high as 37C. - · Hot water temperature, driving heat source, entering temperature as low as 70C. ## Refrigerant cycle The **YORK YHAU CL** high efficiency single-stage absorption refrigeration cycle uses water as the refrigerant and lithium bromide as the absorbent. It is the strong affinity and ease of separation that these two substances have for each other that makes the cycle work. The entire process occurs in hermetic vessels in a near complete vacuum. # Single stage hot water driven absorption chiller ### Two Step Evaporator and Absorber Design #### Efficiency, Reliability, Cost of Ownership The innovative 2-step evaporator and absorber design is more efficient than a conventional cycle. This ingenious design splits the absorption process into two steps, similar to how a series-counter-flow arrangement splits the work between two chillers. The result of the design allows the **YHAU-CL** to perform the absorption function with lower solution concentrations than conventional designs, increasing efficiency and reliability, and decreasing cost of ownership. Reliability is enhanced because the solution concentrations are lower leaving the absorber, which allows the entire cycle to operate at lower concentrations virtually eliminating the possibility of crystallization. Efficiency is enhanced because the **YHAU-CL** can take advantage of lower than normal hot water temperatures in the generator. This is because at lower concentrations the solution will boil at a lower temperature in the generator. Lastly, total operating cost decreases because of the lower concentration of the solution entering the generator, a wider temperature range of hot water can be used, reducing pumping horsepower. #### **Full Automatic Purging System** As a standard feature, the unit has a fully automatic purging system comprising of electronic vacuum transmitter, solenoid valves and trending capability that ensures design performance and improves reliability. The operator does not have to worry about the sequence of purging for removing the non-condensable gases. #### Chiller control The **YHAU Control Center**, standard on each chiller, provides the ultimate in efficiency, monitoring, data recording, chiller protection and operating ease. The LCD display allows graphic animated display of the chiller, chiller sub-systems and system parameters; this allows the presentation of several operating parameters at once. In addition, the operator may view a graphical representation of the historical operation of the chiller as well as the present operation. The panel is capable of communication with building management systems and is available in multiple languages. ## Nominal capacity | YHAU CL Model | 30EXE | 40EXE | 50EXE | 65EXE | 80EXE | 100EXE | 130EXE | 160EXE | 200EXE | 255EXE | 320EXE | 400EXE | 500EXE | | |--------------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------| | Cooling Capacity kW | 105 | 141 | 179 | 222 | 271 | 352 | 443 | 563 | 721 | 869 | 1125 | 1407 | 1758 | | | COP (low temperature hot water) | 0,78 | 0,78 | 0,78 | 0,78 | 0,78 | 0,76 | 0,78 | 0,78 | 0,78 | 0,78 | 0,78 | 0,78 | 0,78 | YHAU CL Model | 630EXW | 700EXW | 800EXW | 900EXW | 1000EXW | 1120EXW | 1250EXW | 1400EXW | 1500EXW | 1600EXW | 1680EXW | 1800EXW | 1900EXW | 2000EX | | YHAU CL Model
Cooling Capacity kW | 630EXW 1934 | 700EXW 2110 | 800EXW 2461 | 900EXW 2708 | 1000EXW 3024 | 1120EXW 3411 | 1250EXW 3938 | 1400EXW 4431 | 1500EXW 4852 | 1600EXW 5134 | 1680EXW 5274 | 1800EXW 5626 | 1900EXW 5943 | 2000EX 6153 | At 6°C leaving chilled water, 90°C entering generator water, and 27°C entering condenser water. #### Technical data | YHAU CL | | | | | | 65EXE | 80EXE | 100EXE | 130EXE | 160EXE | 200EXE | 255EXE | 320EXE | 400EXE | 500EXE | | |-------------|----------------|----|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----| | | Length | mm | 1900 | 2200 | 2500 | 3100 | 2200 | 2600 | 3200 | 3800 | 4600 | 3300 | 3900 | 4700 | 5700 | | | Dimensions | Width | mm | | 1500 | | | | 1800 | | | | | 22 | 00 | , | - | | | Height | mm | | 2100 | | | | | 2500 | | | | 32 | 00 | | - | | Operating w | eight kg | | 2700 | 3100 | 3600 | 4200 | 4400 | 5100 | 6100 | 7200 | 8500 | 10300 | 12200 | 14400 | 17400 | YHAU CL | Model | | 630EXW | 700EXW | 800EXW | 900EXW | 1000EXW | 1120EXW | 1250EXW | 1400EXW | 1500EXW | 1600EXW | 1680EXW | 1800EXW | 1900EXW | 200 | | | Length | mm | 5500 | 6000 | 6700 | 7300 | 8000 | 6700 | 7300 | 8000 | 8500 | 9000 | 9500 | 10000 | 10500 | 1 | | Dimensions | Width | mm | | | 2650 | | | | | | | 3300 | | | | | | | Height mm 3300 | | | | | | | | | 3900 | | | | | | | 43900 46400 49000 51200 53500 55800 58600 61300 64100 Operating weight kg XW 27600 29500 32300 34700 25800 # YORK® absorption chillers and heat pumps With innovative 2-step evaporation and absorption-cycle technology # DRIVING HEAT SOURCE MODEL AND DESCRIPTION HOT WATER Single Effect Hot Water Capacity: 105 - 7,034 kW / 30 - 2,000 TR Application: Combined heat and power (CHP), commercial cooling, industrial process cooling # LOW TEMPERATURE HOT WATER **Single Effect Double Lift Hot Water** Model: YHAU-CL-DXS Model: YHAU-CL/CH **Capacity:** 176 - 4,395 kW / 50 - 1,250 TR **Application:** Combined heat and power (CHP), commercial cooling, industrial process cooling # LOW PRESSURE STEAM **Single Effect Steam** Model: YHAU-C **Capacity:** 422 - 5,275 kW / 120 - 1,500 TR **Application:** Combined heat and power (CHP), commercial cooling, industrial process cooling ## MEDIUM PRESSURE STEAM **Double Effect Steam** Model: YHAU-CW **Capacity:** 422 - 14,067 kW / 120 - 4,000 TR **Application:** Combined heat and power (CHP), commercial cooling, industrial process cooling ### **DIRECT FIRED** Small Double Effect Natural Gas or Light Oil * Model: YHAU-CG/CA-CXR **Capacity:** 105 - 352 kW / 30 - 100 TR **Application:** Commercial cooling #### **DIRECT FIRED** Large Double Effect Natural Gas or Light Oil Model: YHAU-CG/CA Capacity: 422 - 5,626 kW / 120 - 1,600 TR Application: Commercial cooling, industrial process cooling ^{*} Utilizes standard cycle # YORK® absorption chillers and heat pumps With innovative 2-step evaporation and absorption-cycle technology | DRIVING HEAT SOURCE | MODEL AND DESCRIPTION | | |--|---|----------| | EXHAUST GAS | Double Effect Direct Exhaust Gas Model: YHAU-CE Capacity: 527 - 5,064 kW / 150 - 1,440 TR Application: Combined heat and power (CHP), commercial cooling | | | EXHAUST GAS AND LOW
TEMPERATURE HOT WATER | Multi Energy Exhaust and Jacket Hot Water
Model: YHAU-CE-J
Capacity: 527 - 5,064 kW / 150 - 1,440 TR
Application: Combined heat and power (CHP),
commercial cooling | | | EXHAUST GAS AND LOW
TEMPERATURE HOT WATER
AND DIRECT FIRED | Multi Energy Exhaust, Jacket Hot Water, Direct Model: YHAU-CGE-J Capacity: Custom Application: Combined heat and power (CHP), commercial cooling | Fired | | NATURAL GAS AND LOW
TEMPERATURE HOT WATER | Gas Gene-Link Model: YHAU-CG-J Capacity: 422 - 5,626 kW / 120 - 1,600 TR Application: Combined heat and power (CHP), commercial cooling | | | MEDIUM
PRESSURE STEAM
AND LOW TEMPERATURE
HOT WATER | Steam Gene-Link Model: YHAU-CW-J Capacity: 422 - 14,067 kW / 120 - 4,000 TR Application: Combined heat and power (CHP), industrial process cooling | | | HOT WATER, STEAM,
DIRECT FIRED | Low Leaving Chilled Water Temperature (Down Model: YHAU-C-L Capacity: 176 - 1,758 kW / 50 - 500 TR Application: Industrial process cooling / refrigeration | to -5°C) | HOT WATER, STEAM, **DIRECT FIRED** Absorption Heat Pump (Up to 90°C)) Application: District heating, industrial process heating Model: YHAP Capacity: Custom # YIA Single stage hot water or steam powered absorption chiller Cooling capacities from 280 kW to 3150 kW ## **Features** **YIA** chillers are available using low pressure steam or hot water. Compared to electrically driven chillers **YIA** chillers can dramatically lower system operating costs when using waste heat. Applications particularly well suited to the **YORK YIA** absorption chiller include cogeneration, waste heat recovery from diesel or gas engine jacket water, turbine air inlet cooling and district heating and cooling installations. #### Hot water units Hot water units can operate with entering water temperature from 80 to 128°C. #### Steam units Steam units can operate with a steam pressure at generator inlet from 0.2 barg to 0.95 barg. #### Refrigerant cycle The **YORK YIA** high efficiency single-stage absorption refrigeration cycle uses water as the refrigerant and lithium bromide as the absorbent. It is the strong affinity and ease of seporation that these two substances have for each other that makes the cycle work. The entire process occurs in hermetic vessels in a near complete vacuum. By using the environmental friendly ADVAGuard 750 inhibitor the internal corrosion rate and hydrogen generation is up to 8 times less than using lithium molybdate. #### Chiller control The **YORK YIA** chiller utilizes the OptiView control panel for advanced chiller control and building system integration. Smart Purge is included to eliminate the need for time consuming manual purging of the chiller system. # Single stage hot water or steam powered absorption chiller # Nominal capacity | YIA Model | 1A1 | 1A2 | 2A3 | 2A4 | 2B1 | 3B2 | 3B3 | 4B4 | 4C1 | 5C2 | | |---------------------------------|------|------|------|------|------|------|------|------|------|------|---| | Cooling Capacity kW | 280 | 321 | 406 | 465 | 506 | 606 | 674 | 757 | 760 | 928 | 1 | | EER (low temperature hot water) | 0,61 | 0,68 | 0,69 | 0,69 | 0,69 | 0,69 | 0,69 | 0,69 | 0,68 | 0,69 | (| | | | | | | | | | | | | | | YIA Model | 6C4 | 7D1 | 7D2 | 8D3 | 8E1 | 9E2 | 10E3 | 12F1 | 13F2 | 14F3 | | | Cooling Capacity kW | 1145 | 1253 | 1415 | 1535 | 1885 | 2090 | 2265 | 2675 | 2940 | 3150 | _ | | | 0,68 | 0,68 | 0,68 | 0,68 | 0,70 | 0,70 | 0,69 | 0,70 | 0,71 | 0,69 | | At 7°C leaving chilled water, 95°C entering generator water, and 29.4°C entering condenser water. ## Technical data | YIA Model | | | 1A1 | 1A2 | 2A3 | 2A4 | 2B1 | 3B2 | 3B3 | 4B4 | 4C1 | 5C2 | 5C3 | |---------------------|---|----|------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Length | mm | 3720 | 4330 | 4940 | 5550 | 4940 | 5550 | 6160 | 6770 | 5550 | 6160 | 6770 | | Dimensions | Width | mm | 1760 | 1760 1420 | | | | 15 | 80 | | | 1770 | | | | Height | mm | | 23 | 20 | | | 26 | 40 | | | 3020 | | | Operating weigh | nt kg | | 4950 | 5500 | 6130 | 6590 | 7900 | 8540 | 9490 | 10490 | 11400 | 12260 | 13620 | | YIA Model | | | 6C4 | 7D1 | 7D2 | 8D3 | 8E1 | 9E2 | 10E3 | 12F1 | 13F2 | 14F3 | | | | Length | mm | 7530 | 6160 | 6770 | 7530 | 6870 | 76 | 30 | 83 | 90 | 9150 | | | Dimensions | Width | mm | 1770 | 2110 | 1670 | 2110 | 22 | 90 | | 24 | 80 | | | | Height mm 3020 3540 | | | | | | 38 | 40 | | 42 | 40 | | | | | Operating weigh | perating weight kg 14760 17890 19840 2180 | | | | 21800 | 24110 | 26830 | 29790 | 35550 | 39050 | 41140 | | | # WFC SC Single stage hot water absorption chiller Cooling capacities from 17.6 kW to 175.8 kW # CH K & CH MG Natural gas-fired chiller/heaters Cooling capacities from 105 kW to 703 kW Heating capacities from 86 kW to 572 kW ## Features WFC SC **WFC SC** chillers from **Yazaki** are single stage hot water driven chillers. Compared to electrically driven chillers the **WFC SC** series can dramatically lower system operating costs when using waste heat. Applications particularly well suited to the **Yazaki WFC SC** absorption chiller include waste heat recovery from cogeneration or biomass, waste heat from district power station or industry as well as solar thermal. This makes absorption cooling an environmentally friendly and cost–saving alternative to conventional air–conditioning systems. A low electrical energy consumption results in low CO_2 emissions and provide a relief for electricity grids by replacing conventional cooling demand peaks. All chillers are pre–filled and ready for "plug & chill". #### Driving heat source hot water WFC SC units can operate with entering hot water temperature from 70 to 95° C. #### Refrigerant cycle The **Yazaki WFC SC** high efficiency single-stage absorption refrigeration cycle uses water as the refrigerant and lithium bromide (non-flammable, non-toxic, ecologically benign and ozone-friendly) as the absorbent. It is the strong affinity and ease of separation that these two substances have for each other that makes the cycle work. The entire process occurs in hermetic vessels in a near complete vacuum. #### Features CH K & CH MG Natural gas-fired chiller/heaters **CH K & CH MG** from **Yazaki** work with double effect thermo-cycle and may be used for both cooling or heating distribution. Compared to electrically driven chillers **CH K & CH MG** chillers can dramatically lower system operating costs. A low electrical energy consumption results in low CO_2 emissions and provide a relief for electricity grids by replacing conventional cooling demand peaks. All chillers are pre-filled and ready for "plug & chill". #### Direct fired chiller Driving energy is provided by natural gas. Typically a COP of 1.0 or above is achievable. #### Refrigerant cycle The **Yazaki CH K & CH MG** high efficiency double-effect absorption refrigeration cycle uses water as the refrigerant and lithium bromide (non-flammable, non-toxic, ecologically benign and ozone-friendly) as the absorbent. It is the strong affinity and ease of separation that these two substances have for each other that makes the cycle work. The entire process occurs in hermetic vessels in a near complete vacuum. # Single stage hot water absorption chiller WFC SC # Natural gas-fired chiller/heaters CH K & CH MG # Nominal capacity WFC SC | Model | | | | WFC SC 05 | WFC SC 10 | WFC SC 20 | WFC SC 30 | WFC SC 50 | |------------------|--------------------|--------|-------|-----------|-----------|-----------|-----------|-----------| | Cooling Capacity | | | kW | 17.6 | 35 | 70 | 105 | 175.8 | | Sound pressure a | nd pressure at 1 m | | dB(A) | 46 | 46 | 49 | 52 | 52 | | Cold water | Tananavatuva | Inlet | °C | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | | Cold Water | Temperature | Outlet | °C | 7 | 7 | 7 | 7 | 7 | | | Cooling perform | nance | kW | 42.7 | 85.5 | 171 | 256 | 427 | | Cooling water | Tononovotuvo | Inlet | °C | 31 | 31 | 31 | 31 | 31 | | | Temperature | Outlet | °C | 35 | 35 | 35 | 35 | 35 | | | Power consump | otion | kW | 25.1 | 50.2 | 100.4 | 150.6 | 251 | | Hot water | Inlet | Inlet | °C | 88 | 88 | 88 | 88 | 88 | | | Temperature | Outlet | °C | 83 | 83 | 83 | 83 | 83 | ## Technical data WFC SC | Model | | | WFC SC 05 | WFC SC 10 | WFC SC 20 | WFC SC 30 | WFC SC 50 | |-----------------|------------------------------|----|-----------|-----------|-----------|-----------|-----------| | | Length | mm | 594 | 760 | 1060 | 1380 | 1785 | | Dimensions | Width | mm | 744 | 970 | 1300 | 1545 | 1960 | | | Height (with mounting plate) | mm | 1756 | 1920 | 2030 | 2065 | 2085 | | Operating weigh | t | kg | 420 | 604 | 1156 | 1801 | 2650 | # Nominal capacity CH K & CH MG | Model | | | | CHK 30 | CHK 40 | CHK 50 | CHK 60 | CHK 80 | CHK 100 | CHMG 150 | CHMG 200 | |------------------|--------------|--------|----|--------|--------|--------|--------|--------|---------|----------|----------| | Cooling Capacity | | | kW | 105 | 141 | 176 | 211 | 281 | 352 | 527 | 703 | | Heating Capacity | , | | kW | 86 | 115 | 143 | 172 | 229 | 286 | 429 | 572 | | | | Inlet | ٥٢ | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12 | 12 | | Chilled water | Temperature | Outlet | °C | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | | | | | | | | | | | | | Cooling water | Temperature | Inlet | °C | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 | | Cooling water | remperature | Outlet | °C | 35.5 | 35.5 | 35.5 | 35.5 | 35.5 | 35.5 | 34.6 | 34.6 | | Llotustes | Tananavatura | Inlet | °C | 50.5 | 50.5 | 50.5 | 50.5 | 50.5 | 50.5 | 56 | 56 | | Hot water | Temperature | Outlet | °C | 55 | 55 | 55 | 55 | 55 | 55 | 60 | 60 | ## Technical data CH K & CH MG | Model | Model | | | CHK 40 | CHK 50 | CHK 60 | CHK 80 | CHK 100 | CHMG 150 | CHMG 200 | |----------------|--|----|------|--------|--------|--------|--------|---------|----------|----------| | | Length | mm | 1635 | 1635 | 1875 | 1875 | 1995 | 1995 | 3663 | 3735 | | Dimensions | Width | mm | 1460 | 1460 | 1780 | 1780 | 1840 | 1840 | 1951 | 2051 | | | Height (with fixed plate and vent cap) | mm | 2440 | 2440 | 2440 | 2440 | 2820 | 2820 | 2763 | 3003 | | Operating weig | ght | kg | 1720 | 1970 | 2510 | 2770 | 4060 | 4540 | 6210 | 7340 | # Central Plant Optimization™ 10 A facility's central chiller plant typically uses 20% of the building's total energy. Managing this load, while still maintaining occupant comfort, is a primary strategy for overall energy management. Johnson Controls® Central Plant Optimization™ 10 (CPO 10) provides such a strategy
combining expertise from designing YORK® chillers and Metasys® controls to save energy and improve reliability in the facility. The application uses tested best practices to select the most efficient combination of chillers, pumps and cooling towers to match the building load. It then commands the selected devices providing the necessary sequencing of pumps, isolation valves and main equipment, while observing safety and stability operation requirements. # Creating a complex program without programming The System Selection Tool (SST) is a control program generator that relies on defining the characteristics of the chiller plant and its control strategies. The tool supports **selection and sequencing** of - \cdot up to eight chillers of different sizes, compressor types and fixed or variable speed - up to eight (each) primary and secondary chilled water pumps of varying pumping capacities - · up to eight condenser water pump - of cooling towers and bypass valve, including single speed, multi-speed, and vernier control (one variable speed fan with all other tower fans at constant speed) - · up to four heat exchangers (Waterside Economizers) - · both water-cooled and air-cooled chillers Furthermore, **control definition** for the chiller plant in a single Field Equipment Controller (FEC)/Network Controller Engine (NCE), if supported by available memory and point Input/Output (I/O), or split across multiple FECs/NCEs, is offered. ## Flexibility, ready for use A variety of primary control strategies are also available, including - measuring building chilled-water flow and differential temperature - · chiller load (kW) - · flow through a decoupler pipe in a primary/secondary system - $\boldsymbol{\cdot}$ differential temperature only, in a constant speed chilled water pump system It is also possible to select dozens of secondary strategies, such as - open loop control of the cooling towers (as defined by the American Society of Heating, Refrigerating and Air-Conditioning Engineers) - · closed loop control of condenser-water setpoint After making the selections, SST **generates a complete program** by linking together appropriate software modules. This process removes the variability commonly found in totally custom–generated programs using a traditional software program editor. Once the software modules are linked, the tool allows the entry of all equipment parameters. The resulting program can also be run in a simulator mode to verify proper operation before downloading it into Metasys®. Œ # **Heat Pump Solutions** According to the Environmental Protection Agency (EPA), it is estimated that 5% of the world's daily energy consumption is expended on fuel for heating water. Additionally, in Western European countries, 25 % of primary energy used is for cooling and heating applications. As pressure continues on natural resources and energy bills continue to rise, we must seek new, environmentally friendly solutions. One smart option is to improve the energy utilization of your facility's heating and cooling system by recycling heat energy that would otherwise be rejected. This can be accomplished with a Johnson Controls heat pump. At Johnson Controls we set standards without compromising our core principles: and when passion and innovation come together, great things happen! # What is a Heat Pump? Heat pumps are designed to produce hot water at a specified temperature. Heat is extracted from a low-temperature source such as air, ground water, or waste process heat, and its temperature is raised to a level where it can be used in alternative processes. There are 4 primary system designs for heat pumps: - 1) Air-source An example of this is the heat pump you may have in your home. - 2) Ground-source This system uses the ground as the heat source, often used in residential or light commercial applications. - 3) Water-source This system uses a building's water supply to transfer heat. This is the most commonly used system. - 4) Cascade-source The system uses heat from existing refrigerant systems or any available waste heat source. Traditionally, chillers are used to provide a building's required cooling load (rejecting heat to atmosphere via cooling towers) and boilers supply hot water to meet the building's heating needs. Using a Heat Pump gives increased system efficiency and lowers operating expense as they can supplement or even replace existing heating systems, and can also operate in reverse cycle to provide cooling during the summer. There are also processes in which cooling and heating functions perform simultaneously. Again, heat pumps are an ideal solution to this challenge. ## Benefits of using heat pumps Traditional systems used to heat water for hydronic heating and domestic hot water are not energy efficient. Heat pumps offer a number of advantages when compared to fossil-fuel water heaters: - ▶ Higher COPs offer energy cost-savings above 50%. - Thanks to their efficiency and short amortization period, they represent an environmentally compatible and economically attractive alternative to conventional heating systems. **Potential payback of the heat pump can be less than 2 years.** - **D** Low operating-cost supplement to water heaters where total heating requirement exceeds heat pump capacity. - Heat pumps can also be used as water chillers, which means lower first-costs, as one item of equipment performs cooling and heating. - Life cycle of over 20 years. Johnson Controls heat pumps offer additional benefits by using environmentally friendly HFC and natural refrigerants, with **zero** ozone depletion potential, and low global warming potential. ## Reduced operating costs The best way to compare the efficiency of a heat pump and a water heater is to do a COP analysis. COP equals the energy output (useful heat generated) divided by the energy input (energy supplied to the equipment). # Accordingly, the higher the COP, the more efficient the system – and the lower your running costs! As an example we can take a 1800 kW water-cooled heat pump as the one showed in chart and compare it to a natural gas boiler. When you compare the efficiency of a boiler to a heat pump, the heat pump comes out way ahead. In the example given it's possible to save up to 53% in the energy bill vs the traditional natural gas boiler! | Hot Water
Requirement | Energy
Source | Efficiency | Energy
Consumption | Cost
of Source* | Cost of
Hot Water
Requirement | HP Saving
vs
Gas Boiler | |--------------------------|---------------------------|----------------------------|-------------------------|---|---|-------------------------------| | 1 kWh | Natural Gas
Boiler | Average efficiency COP=0.9 | 1 kWh / 0.9
1.11 kWh | European Avg.
Gas Cost
0.041 €/kWh | 1.11 kWh
×
0.041€/ kWh
4.5 c€ | - | | 1 kWh | Air cooled
Heat Pump | Average efficiency COP=3.2 | 1 kWh / 3.2
0.31 kWh | European Avg.
Electricity Cost
0.12 €/kWh | 0.31 kWh
×
0.12€/ kWh
3.7 c€ | 18% | | 1 kWh | Water cooled
Heat Pump | Average efficiency COP=5.5 | 1 kWh / 5.5
0.18 kWh | European Avg.
Electricity Cost
0.12 €/kWh | 0.18 kWh
×
0.12€/ kWh
2.1 c € | 53% | ^{*} Cost of Source: Eurostat Statistics web site. ## CO₂ footprint reductions Another benefit that offers heat pump technology is the reduction in CO_2 emissions from fossil fuel use. Heat pumps are a highly efficient electric alternative. If we refer to the same example with a 1800 kW water-cooled heat pump and compare it to a natural gas boiler, the reduction in CO_2 emissions is impressive. In fact 1322 tons of CO_2 annually can be saved, which is the equivalent of removing about 278 cars* from the road! ^{*} www.epa.gov/cleanrgy/energy-resources/calculator.html | Hot Water
Requirem. | Energy
Source | Efficiency | Energy
Consumption | CO ₂ Source
Emissions* | Carbon
Footprint | HP CO ₂ footprint
reduction vs Gas
Boiler | |------------------------|------------------------------|----------------------------|--------------------------------|---|---|--| | 1 kWh | Natural Gas
Boiler | Average efficiency COP=0.9 | 1 kWh / 0.9
1.11 kWh | CO ₂
Emissions
204 g CO₂/
kWh | 1.11 kWh x
204g CO ₂ /kWh
226 g CO ₂ | - | | 1 kWh | Air cooled
Heat Pump | Average efficiency COP=3.2 | 1 kWh / 3.2
0.31 kWh | CO ₂
Emissions
541 g CO₂/
kWh | 0.31 kWh x
541g CO ₂ /kWh
167 g CO ₂ | 26% | | 1 kWh | Water
cooled
Heat Pump | Average efficiency COP=5.5 | 1 kWh / 5.5
0.18 kWh | CO ₂
Emissions
541 g CO₂/
kWh | 0.18 kWh x
541g CO ₂ /kWh
97 g CO ₂ | 57% | ^{*} CO₂ Source Emissions: UK Department of Energy, Food and Rural Affairs and carbonindependent web site # Reduced water and chemical consumption When a heat pump is operating we are keeping heat within the building and not rejecting heat to the atmosphere. In other words, we're saving condenser water from evaporating. So when we look at our same 1800 kW water-cooled heat pump example again, how much water are we saving by not expelling heat to the atmosphere from the cooling tower? ## Over 26 million litres anually! ## **LEED** points Heat pumps will help you and your customers get LEED points. LEED is one of the most recognizable bodies that certifies building designs to demonstrate leadership in environmental impact. The use of a heat pump also helps accreditation for BREEAM and other similar schemes. # **Heat Pumps solutions** We do have a wide range of industrial heat pumps for several capacities and at different temperature levels. # Heat pumps with standard
temperature YLHD Air to water HP Scroll compr. / R410A Hot water up to 50°C Heating capacity: 23 to 160 kW Air to water HP Scroll compr. / R410A Hot water up to 55°C Heating capacity: 48 to 255 kW **YMPA** Air to water HP Twin screw / R134a Hot water up to 55°C Heating capacity: 145 to 186 kW YHME Air to water HP Scroll compr. / R410A Hot water up to 55°C Heating capacity: 200 to 327 kW **YLRA** YLPB Air to water HP Scroll compr. / R410A Hot water up to 52°C Heating capacity: 352 to 669 kW YMWA Water to water HP Scroll compr. / R410A Hot water up to 55°C Heating capacity: 25 to 210 kW Water to water HP Screw compr. / R134a Hot water up to 55°C Heating capacity: 170 to 300 kW Water to water HP Scroll compr. / R410A Hot water up to 52°C Heating capacity: 210 to 675 kW YLCS Water to water HP Twin screw / R134a Hot water up to 70°C Heating capacity: 400 to 2000 kW YVWA Water to water heat pump Screw compressor / R134a Hot water up to **65°C** Heating cap.: 650 to 1250 kW YMC² Water to water heat pump Variable speed centrif. compr. Magnetic bearings / R134a Hot water up to 65°C Heating cap.: 1600 to 3000 kW **HeatPAC** recip Variable-Speed Drive Reciprocating compr. / R717 Hot water up to 70°C Heating capacity up to 1200 kW at 40°C source YK HP Water to water heat pump Centrifugal compr. / R134a Hot water up to 50°C (Std) Hot water up to 70°C (HP) Heating cap.: 1000 to 9000 kW # Heat pumps with high temperature HeatPAC HPX recip Variable-Speed Drive Reciprocating compr. / R717 Hot water up to 90°C Heating capacity up to 600 kW at 40°C source **HeatPAC** Variable-Speed Drive Screw compressor / R717 Hot water up to 90°C Heating capacity up to 1600 kW at 40°C source SHP Water to water heat pump Screw VSD compr. / R134a Hot water up to 80°C Heating cap.: 700 to 3000 kW YHAP-C Single stage absorption Steam, Gas or Hot Water driven / R718 Hot water up to **95°C** Heating cap.: 900 to 40000 kW # **Customized Heat Pumps** **HeatPAC Custom** Two-stage cascade VSD Screw compressor / R717 Hot water up to 90°C Reciprocating compressor / R717 Hot water up to 70°C Heating cap. up to +3000 kW at 40°C source CYK HP Water to water heat pump Dual-Centrifugal compressors, Series-Arrangement / R134a Hot water up to 70°C Heating capacity from 2500 to 7000 kW Titan OM HP Water to water heat pump Multi-stage Centrifugal, electric, steam or gas driven / R134a Hot water up to 90°C Heating capacity from 5000 to 20000 kW # **ECODESIGN LABEL REGULATION** # Our commitment to the environment At Johnson Controls, we've been dedicated to protecting the environment since our invention of the electric thermostat in 1885, which provided a fundamental shift in the energy efficiency of buildings. Now, all over the world, our products and services empower customers and communities to consume less energy and conserve resources. This commitment is in line with the targets of the European climate and energy package for 2020: # The 5 targets for the EU in 2020 - 1. Employment - 75% of the 20-64 year-olds to be employed - 2. R&D - 3% of the EU's GDP to be invested in R&D - 3. Climate change and energy sustainability - greenhouse gas emissions 20% (or even 30%, if the conditions are right) lower than 1990 - · 20% of energy from renewables - · 20% increase in energy efficiency - 4. Education - Reducing the rates of early school leaving below 10% - at least 40% of 30-34-year-olds completing third level education - 5. Fighting poverty and social exclusion - at least 20 million fewer people in or at risk of poverty and social exclusion Source: http://ec.europa.eu/europe2020/index_en.htm # Energy Efficiency Improvement Targets strongly influence the HVAC Market Buildings today are the largest consumers of energy, and HVAC systems account for a significant portion of a building's energy consumption. Providing customers with energy efficient solutions is a key development opportunity for the HVAC industry. # The Regulatory Response The European Union has developed two directives (Ecodesign Directive 2009/125/EC and Energy Labeling Directive 2010/30/EC) to address the environmental impact of all Energy related Products (ErP) beginning at the earliest stages of design. YORK Chillers and Heat Pumps are currently affected by these directives or will be affected moving forward. # What is Ecodesign Directive? Ecodesign Directive is a framework that regulates the environmental impact of all products using energy (excluding products in the transport sector). Application of Ecodesign Directive for Chillers and Heat Pumps is enforced through regulations specific to various products and operating ranges. Once a regulation is published and active, products affected must comply with the minimum efficiency performance, sound emissions, etc., to receive a CE mark. The EU framework for Energy Efficient products' "push and pull effect" on the market Source: EPEE (https://www.epeeglobal.org/energy-efficiency/) # Which Products are affected by Ecodesign? Ecodesign directive affects different types of Energy related Products (ErP) including: TVs, washing machines, lights and HVAC products and components. Energy related Products are grouped into "Lots" and the following Lots are applicable to HVAC products. - O ENER Lot 1: Space Heaters (Heat pumps) - ENTR Lot 1: Professional refrigeration (Process Chillers brine) - O ENER Lot 21: Central heating and cooling products (Chillers) # How and when will Ecodesign Directive affect YORK Chillers and Heat Pumps? Minimum Efficiency Performance Standards (MEPS) are minimum performance requirements, implemented in 2 steps (Tiers), as shown in the table below. # **ENER Lot 1 - Space Heaters (Heat Pumps)** Published regulation 813/2013 affects all Heat Pumps (both air and water cooled) with a rated heating output below 400kW (measured at -10°C ambient). The heat pumps affected by this regulation are classified as Low Temperature if heating outlet fluid temperature can not be supplied at 52° C (measured at -7° C ambient). ## A new KPI Ecodesign regulation 813/2013 introduces a new Key Performance Indicator (KPI) for seasonal primary energy efficiency (η_c), that allows product efficiency comparison with different energy sources. $$\eta_{s,h}(\%) = 1/CC \times SCOP-\Sigma F_i$$ #### SCOP - Seasonal Coefficient of Performance Ratio between the annual heating demand and the annual electrical input energy over the entire heating season. SCOP is calculated using standard EN14825, which takes the following into account: - Seasonal efficiency while the compressor is running (SCOPon) - Electrical consumption when the compressor is not running: crankcase heater, standby or OFF mode - Backup heater required to achieve the defined heating design load #### CC - Conversion Coefficient European average coefficient that represents the amount of primary energy required to obtain electricity. CC is defined by the regulation with a constant value of 2,5. # $\sum F_i$ – Correction Factors Air source heat pumps $$\sum F_{i} = 3\%$$ Water source heat pumps $$\sum F_i = 8\%$$ #### A better Indicator $\eta_{s,h}$ and SCOP are better indicators than full load COP for heating efficiency, as they take into account a representative set of operating hours and real world conditions. ## **Easy to Compare** $\eta_{\text{s,h}}$ is the Seasonal PRIMARY Energy Efficiency value and is used to compare heating products using different energy sources. # **Eco-Design Requirements for Space Heaters (Heat Pumps)** **MEPS** - **M**inimum **E**fficiency **P**erformance **S**tandards = η_{sh} | | TIER 1 (Oct'15) | TIER 2 (Oct'17) | |------------------------------------|------------------|-----------------| | | η _{s,h} | $\eta_{s,h}$ | | Heat Pump | 100% | 110% | | Low Temperature Heat Pump < 400 kW | 115% | 125% | # ENTR Lot 1 - Professional Refrigeration (Process Chillers brine) Published regulation 1095/2015 affects all Process Chillers operating at design capacity that can generate outlet fluid temperature of -25°C (Low Temperature) or -8°C (Medium Temperature). High Temperature Process Chillers operating at design capacity that can generate outlet fluid temperature of 7°C are part of ENER Lot 21. #### A new KPI Ecodesign regulation 1095/2013 introduces a new indicator called Seasonal Energy Performance Ratio (SEPR), which is the ratio of annual cooling demand to annual electrical energy consumption. At this time there is no EN specification to base the SEPR calculation on. The calculation is currently based on the "Transitional method for determination of SEPR for industrial process chillers", published with the regulation. SEPR is calculated from an average climate reference with ambient temperature ranging from -19°C up to 38°C, and with corresponding operating hours at each temperature bin. For Process Cooling, the operating load ranges from 100% down to 80%. #### A better Indicator SEPR is a better performance indicator for process cooling, as it accounts for year round, high load profile operation typical of process cooling applications. The graph on the left and below displays the distribution of temperature bins and hours used by the regulation as a climate reference. This climate reference is based on weather data from cities throughout central Europe. The graph on the right and below displays rating points that are part of the SEPR and SEER calculations. Note that SEPR is focused on high loads (typical of process cooling applications) and SEER is focused on variable loads (typical of comfort applications). # Bonus for units using Low Global Warming Potential (GWP) refrigerants As detailed in the table below, regulation 1095/2015 adjusts the Minimum Energy Performance Standard (MEPS) based on the GWP of the refrigerant used. # Eco-Design Requirements for Process Chillers Medium Temperature MEPS - Minimum Efficiency Performance Standards = SEPR | | 1st Jul | y 2016 | 1st July 2018 | | | |------------------------|---------|---------|---------------
---------|--| | EFFICIENCY | SE | PR | SEPR | | | | | GWP>150 | GWP<150 | GWP>150 | GWP<150 | | | Air to water < 300kW | 2.24 | 2.02 | 2.58 | 2.32 | | | Air to water > 300kW | 2.80 | 2.52 | 3.22 | 2.90 | | | Water to water < 300kW | 2.86 | 2.57 | 3.29 | 2.96 | | | Water to water > 300kW | 3.80 | 3.42 | 4.37 | 3.93 | | # **ENER Lot 21 - Central Heating and Cooling products** (Comfort Chillers, High Temperature Process Chillers) Regulation 2016/2281 affects High Temperature Process Chillers and Comfort Cooling Chillers with rated cooling capacity below 2.000 kW. For Comfort Cooling Chillers, compliance is based on either Fan Coil application or Cooling Floor application. The manufacturer's technical datasheet is to specify application(s) in compliance. #### A new KPI Ecodesign regulation introduces new Minimum Energy Performance Standards for Comfort Cooling Chillers (SEER), and Process Cooling Chillers (SEPR). In the case of SEPR it will be calculated in a similar way as for process chillers brine. In the case of $(\eta_{s,c})$, it will be calculated in a similar way to $\eta_{s,b'}$ used for comfort heating applications. $$\eta_{s,c}(\%) = 1/CC \times SEER-\sum_i F_i$$ ### SEER - Seasonal Energy Efficiency Ratio Ratio between the annual cooling demand and the annual electrical input energy over the entire cooling season. SEER is calculated using standard EN14825, which takes the following into account: - Seasonal efficiency while the compressor is running (SEERon) - Electrical consumption when the compressor is not running: crankcase heater, standby or OFF mode ## A better Indicator $\eta_{\text{s,c}}$ and SEER and SEPR are better performance indicators for cooling, as they take into account temperature bins and hours based on weather data from cities throughout central Europe. As displayed on the chart below, Process Chillers (SEPR) account for a wider range of temperatures than Comfort Chillers (SEER), which only consider temperatures down to 15°C. #### CC - Conversion Coefficient European average coefficient that represents the amount of primary energy required to obtain electricity. CC is defined by the regulation with a constant value of 2,5. $$\sum F_i$$ - Correction Factors Air-cooled chillers $\sum F_i = 3\%$ Water-cooled chillers $\sum F_i = 8\%$ #### Similar to current ESEER Seasonal Energy Efficiency Ratio (SEER) is calculated similar to Eurovent Seasonal Energy Efficiency Ratio (ESEER). SEER however uses a different set of ambient temperatures and different weighting as a reference. As a result, SEER values are ALWAYS less than ESEER values. # Eco-Design Requirements for Process Chillers High Temperature MEPS - Minimum Efficiency Performance Standards = SEPR | | | Minimum SEPR
value | Minimum SEPR
value | Minimum η _{s,c}
value | Minimum $oldsymbol{\eta}_{s,c}$ value | |---|--|-----------------------|-----------------------|--|---------------------------------------| | Heat transfer medium at the condensing side | Rated refrigeration capacity | TIER 1 (Jan'18) | TIER 2 (Jan'21) | TIER 1 (Jan'18) | TIER 2 (Jan'21) | | Air | $P_{A} < 400 \text{ kW}$ | 4.5 | 5.0 | 149 | 161 | | All | $P_A \ge 400 \text{ kW}$ | 5.0 | 5.5 | 161 | 179 | | | P _A < 400 kW | 6.5 | 7.0 | 196 | 200 | | Water | $400 \text{ kW} \le P_A < 1500 \text{ kW}$ | 7.5 | 8.0 | 227 | 252 | | | $P_{\Delta} \ge 1500 \text{ kW}$ | 8.0 | 8.5 | 245 | 272 | ### **Product Information** Manufacturers are to provide to installers and end users instruction and access to a website that makes available (for free) a new "Technical Data Sheet" document summarizing the values used for the MEPS (Π s,c, SEPR or Π s,h) calculation. Below is an example of the "Technical Data Sheet" as it appears in regulation 2016/2281: # Compliance All YORK products on the EU market comply with applicable Ecodesign regulations. In many cases YORK products offer significantly better energy efficiency than required by regulation, resulting in an attractively low cost of operation and lighter environmental footprint. # Air Handling Systems & Terminal Devices AIR HANDLING UNITS FAN COIL UNITS CLOSE CONTROL UNITS SMARTPAC - FACTORY PACKAGED CONTROLS # So why choose YORK® Air Handling Units? We recognise that your reputation depends on the quality of the products you choose and how well they are installed. That's why we work hard to make selecting, installing and operating our products as easy as possible. Our comprehensive range includes a number of additional options that make YORK® Air Handling Units the professional's choice. Additionally, our Air Handling Units comply with requirements of EU Commission Regulation No. 1253/2014 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for ventilation units. # **Factory Packaged controls** Save money and time avoiding to mount controls on-site. Johnson Controls offers YORK® Air Handling Units complete with Metasys® factory packaged controls so it is ready connect to the site network when it arrives. Our Factory Packaged controls undergo a detailed testing process at the factory to ensure that all wiring is installed correctly, and that all control panels and end devices work appropriately before the AHU is shipped. ## **Energy recovery options** The exhaust air stream from an AHU represents another opportunity to save energy. A **heat recovery 'thermal' wheel** can economically transfer heat and moisture between the exhaust-air and outside-air paths, reducing the cost of conditioning the supply air. For the simplest form of heat recovery, you can take advantage of "free" cooling with mixing box sections. During spring and autumn operation, cool/dry outside air cools and dehumidifies the facility, reducing the need for mechanical cooling. Alternatively, you can use **recuperative plate heat exchangers**. These also allow free cooling in summer by use of face and bypass dampers which by-pass the air around the exchanger so that it is not warmed by the extracted air. We can also offer **refrigerant heat pipe** and **heat recovery coils** on your AHU to maximise energy savings. All heat recovery devices installed are compliant with latest ErP regulations. #### **Factory Packaged Controls option** - AHUs Metasys® factory packaged controls specified option available. - Panel Power wiring, Controls wiring and the Variable Speed Drive are included. The pre-engineered controller and required peripheral devices are all supplied factory fitted and tested - Guaranteed compliance with European installation regulations. - Simplified final commissioning through the units' keypad and display Heat-recovery wheels reduce the cost of conditioning supply air. # Reduce fan operating costs In an AHU, the fan is traditionally the largest source of energy consumption. We can help reduce this by offering a range of **energy-saving options**. - · High- or premium-efficiency motors can be specified. - Direct-drive plenum fans eliminate belt-and-pulley energy losses. - If the air system is designed for variable–air volume (VAV), YORK® AHUs fitted with variable speed drives offer the most efficient method of VAV fan control. - Factory-mounting a variable speed drive reduce jobsite labour costs, unit energy consumption and unit Life Cycle Costs. # Introducing the YMA range of Air Handling Units The YORK® YMA range encompasses our extensive knowledge of air-handling, offering a highly reliable, economical and energy efficient product capable of addressing all of your needs. #### **Features** The YMA family of air handling units consists of a range of models having air volumes ranging from $0.25~\text{m}^3/\text{s}$ to $50~\text{m}^3/\text{s}$ and total static pressures as high as 2000 Pascal: to ensure maximum flexibility and the best solution for your application, units are available in increments of 40mm in height and 50mm in width. YMA Air Handling Units can be manufactured in varied configurations, with a wide selection of components, to meet customer requirements. Units are also available in line with the requirements of hospital sector specifications. **Dimensional flexibility.** Space constraints are a reality on most construction projects. YORK® AHU's design is based on variable aspect ratios, so the unit can be specified to fit the application and space. **Material flexibility.** Different environments require different materials so we offer a number of construction materials, including galvanized steel, pre-coated steel, stainless steel, and aluminium. **Component flexibility.** To meet any AHU requirement, our units offer every available air–handling component. And as applicable technology creates new capabilities, Johnson Controls will apply this to our product range. Over the past 50 years we have supplied air handling units for: - Commercial space: office buildings, cinemas, concert halls - Institutional space: schools, universities, churches - Industrial manufacturing: automotive, aerospace, chemical, petrochemical - **Hygienic systems:** hospitals, life sciences, R&D facilities, food processing, clean rooms - **Process manufacturing:** pharmaceutical, electronics, semiconductor **Equipment Life Cycle.** Each YMA unit has a designated suffix ('S', 'T', or 'R') that identifies the factory of origin. This makes it easier to identify and locate production and technical data to assist in advising on spare parts, as well as supporting the customer with any post installation modifications or upgrades that may be requested during the life of the unit. # YMA Custom Air Handling Units A complete range from 0.25 m³/s to 50 m³/s ## **Features** The YMA family of air handling units consists of a range of models having air volumes ranging from 0.25 m 3 /s to 50 m 3 /s and total static pressures as high as 2000 Pascal: to ensure maximum
flexibility and the best solution for your application, units are available in increments of 40mm in height and 50mm in width. YMA Air Handling Units can be manufactured in varied configurations, with a wide selection of components, to meet customer requirements. Units are also available in line with the requirements of hospital sector specifications. Units may include combinations of any of the following: - Single or double decked units. - Indoor or outdoor applications Outdoor units are available with a flat or sloping roof, louvres, rainhoods, birdscreens and special finishes. - Site assembled units. Where space constraints restrict the size of a single item modules can easily be aligned and locked together by gaskets and stainless steel bolts inserted into factory predrilled assembly holes. - Air mixing boxes and various filter options. - Gas fired burners. - Cooling and heating coils. - Humidifiers - Heat recovery systems. - UV sterilising lamps. - Dessicant and thermal wheels. - Sound attenuation. - ATEX Certification. - Factory fitted controls and sensors with YORK SmartPAC Factory Packaged Controls. These include all necessary piping, wiring, controls and refrigeration equipment to provide a complete central air conditioning plant. - Hygienic construction option for hygiene sensitive environments. #### The Frame - · Low weight, corrosion resistant, marine aluminium alloy twin box section profile, designed to provide strenght and stability - · Gaskets between the frameworks' panels and profiles, to allow efficient cleaning and prevent trapping and harmful bacteria growth - · Optional thermal bridge free profile - Unit sections mounted on a 3mm thick galvanized steel bolted base frame Cold Bridge Free Construction # **Panels** Standard Construction - · Standard 60mm thick (40mm optional) double skinned galvanized panels - 0.7mm internal and external skins with 40kg/m³ density pressure injected polymerised polyurethane foam insulation - Returned "K" value of 0.2W/m C - · Optional panels manufacturing from pre-plastic coated steel, prepainted metal or stainless steel - · Mineral wool infill panel of 100kg/m3 density available - · 88mm panels available upon request #### Access - Fully removable panels - · Access doors equipped with half turn nylon handles and cam locks - Fibreglass reinforced plastic hinges with stainless steel pivots - Double glazed viewing portholes (optional) #### Mechanical characteristics- prEN 1886:2007* *EUROVENT DIPLOMA 05.02.314 YMA(S) APPLIES | MODEL | CASING
STRENGTH
CLASS | CASING AIR
LEAKAGE CLASS
AT 400 Pa | CASING AIR
LEAKAGE CLASS
AT 700 Pa | THERMAL
LEAKAGE CLASS | FILTER BYPASS
TRANSMITTANCE
CLASS | THERMAL
BRIDIGING
FACTOR CLASS | |----------|-----------------------------|--|--|--------------------------|---|--------------------------------------| | PU6055ST | D1(M) | L1(M) | L1(M) | F9(M) | T2 | TB3 | | PU6040TB | D1(M) | L1(M) | L1(M) | F9(M) | T1 | TB2 | | RW6055ST | D2(M) | L2(M) | L2(M) | F9(M) | T2 | TB3 | | RW6055TB | D1(M) | L1(M) | L2(M) | F9(M) | T2 | TB2 | | PU6055TB | D1(M) | L1(M) | L1(M) | F9(M) | T1 | TB2 | | PU8855TB | D1(M) | L1(M) | L1(M) | F9(M) | T1 | TB2 | # YMB / YPS Modular Air Handling Units A complete range from 0.28 m³/s to 28 m³/s Building and indoor climate requirements are constantly evolving. They can be influenced by many factors: energy legislation, occupancy churn, lighting, IT infrastructures... all important reasons that highlight the need for reliable, efficient Air Handling units. Suitable for use in either new building developments or upgrades and refitting of existing buildings, our **YMB** range of AHU is a range of modular, Fixed Aspect Ratio units designed with efficiency and cost in mind to meet the needs of more 'commercial' installations. Our knowledge, flexibility and commitment to the customer address four primary requirements of building owners and designers—efficiency, flexibility, sustainability, and confidence. # YMBS / YMBD Modular Air Handling Unit characteristics | Available sizes | 12 | | | |----------------------|---|--|-------| | Airflow range (m³/h) | 1 000 ~ 100 000 | | | | Application | housing and retail construction ind public utility buildings industrial facilities construction leisure facilities | ustry | T CTC | | Basic options | G4 class filters F5, F7, F9 class filters heat recovery water / steam / glycol / electric heat water / glycol / freon cooler humidification, fan and attenuation | | | | Additional options | sub-assemblies manufactured as e swimming pool version hygienic version YORK® SmartPAC Factory Package | | | | Heat recovery | recirculationcross-flow heat exchangerrotary heat exchanger | heat pipeglycol recovery systemheat pump | | | Installation type | indoors (YMBS) / outdoors (YMBD) | | | | | | | | # YPS Modular Air Handling Unit characteristics # YMBS/YMBD and YPS performances | YMBS/YMBD* | | | | | | | | | |------------------|-------------------------|------------|--------------|--------------|--|--|--|--| | Unit
size | Airflow range
[m³/h] | Width
B | Height
H1 | Height
H2 | | | | | | Insulation 50 mm | | | | | | | | | | 1 | 1 000 - 3 000 | 690 | 600 | 1 280 | | | | | | 2 | 2 600 - 4 100 | 740 | 700 | 1 480 | | | | | | 3 | 3 900 - 6 100 | 980 | 700 | 1 480 | | | | | | 4 | 6 000 - 9 400 | 980 | 1 010 | 2 100 | | | | | | 5 | 8 000 - 12 600 | 1 290 | 1 050 | 2 100 | | | | | | 6 | 9 600 - 15 100 | 1 290 | 1 250 | 2 500 | | | | | | 5-BIS | 11 000 - 17 000 | 1 580 | 1 050 | 2 100 | | | | | | 6-BIS | 13 200 - 21 000 | 1 580 | 1 250 | 2 500 | | | | | | 7 | 13 500 - 21 300 | 1 580 | 1 370 | 2 740 | | | | | | 7-BIS | 18 000 - 28 000 | 1 885 | 1 370 | 2 740 | | | | | | 8 | 21 300 - 33 700 | 1 885 | 1 670 | 3 340 | | | | | | 9 | 26 000 - 41 000 | 1 885 | 2 020 | 4 040 | | | | | | 8-BIS | 30 000 - 46 000 | 2 400 | 1 670 | 3 340 | | | | | | 10 | 34 000 - 53 000 | 2 400 | 2 020 | 4 040 | | | | | | 8A-BIS | 38 000 - 59 000 | 3 000 | 1 670 | 3 340 | | | | | | 11 | 43 000 - 69 000 | 2 400 | 2 500 | 5 000 | | | | | | 10-BIS | 46 000 - 71 500 | 3 000 | 2 020 | 4 040 | | | | | | 12 | 57 000 - 90 000 | 3 000 | 2 500 | 5 000 | | | | | | 12-BIS | 68 000 - 106 000 | 4 800 | 2 020 | - | | | | | ^{*} YMBD only in 50 mm thick insulation (optionally, YMBS and YMBD in 70 mm thick insulation) | YPS | | | | | | | | |------------------|-------------------------|------------|-------------|--|--|--|--| | Unit
size | Airflow range
[m³/h] | Width
B | Height
H | | | | | | Insulation 40 mm | | | | | | | | | 1 | 500 - 3 000 | 760 | 395 | | | | | | 2 | 1 100 - 4 500 | 1 070 | 395 | | | | | | 3 | 800 - 3 600 | 760 | 525 | | | | | | 4 | 1 700 - 5 100 | 1 070 | 525 | | | | | YMBS/YMBD YPS # YBV "Plug and Play" Air Handling Units A complete range from 400 m³/h to 5000 m³/h Introducing the new YBV series of self contained Air Handling Units from YORK®. YBV units are a range of compact Air Handling units offering true Plug and Play capability using our VerasysTM BMS system – Their ready-to-use control functions are provided for accessories such as cooling units and heating coils and wiring is done by means of cables with quick connectors. Additionally, energy-saving fans and efficient heat recovery devices offer full control of temperatures, airflows and operating times to give you optimal operational economy. For ease of maintenance, inspection doors are large for easy component access and all major components are side removable. **YBV series** units can be selected and ordered quickly and easily, and have a short lead time – offering you a space saving, time saving, cost saving, energy saving solution! The YBV range comprises the following models: - · YBVS series, with counter flow or cross flow heat exchanger - · YBVR series, as per YBVS series but with rotary wheel heat exchanger - · YBVD series compact, low capacity range with counter flow or cross flow heat exchanger # YBVS Air Handling Unit characteristics ## System advantages - Easy and simple installation (plug&play) - Reduced cost of operation due to high-effinciency heat exchanger (91% recovery YBVS-1) - · Low noise level - A by-pass integrated with the cross-flow heat exchanger allows for operation without heat recovery - · Self-supporting housing structure without aluminium profiles - · Attractive and minimalistic style - Ensured supply of a suitable volume of fresh and additionally cleaned air - Ensured high quality air and good effect on the health of people staying rooms - Automatic components supplied with Johnson Controls Factory Packaged Controls The **YBVS 2, 3, 4** unit has two axial-centrifugal fans. Supply fan removes contaminated warm air from the room and the exhaust fan, transports cold feed air. Both streams are decontaminated on filters and pass through the crossflow heat exchanger, where heat is exchanged between the streams. Additionally, fresh air, after passing through the cross-flow exchanger, is heated by an electrical or water heater to the required temperature of the supplied air. The unit has an integrated by-pass. #### **Functions:** - Night cooling of rooms during summer by bypassing the cross-flow exchanger, when the outdoor temperature is lower than the indoor temperature. - Defrosting of the heat exchanger Performance (m³/h) | | | | Dimensions
[mm] | | | Airflow rar | nge [m³/h] | | |--------------|----------------|------------|-----------------|-------------|-------------------------------------|-------------|------------|-----------------------| | Unit
size | Weight
[kg] | Width
B | Height
H | Length
L | Flexible connections, dampers B x H | min | max | Max heat recovery [%] | | 1 | 85 | 550 | 600 | 1 100 | fi 160 | 400 | 400 | 91 | | 2 | 180 | 750 | 850 | 1 300 | 400 x 200 | 600 | 1 200 | 72 | | 3 | 240 | 800 | 1 000 | 1 600 | 500 x 315 | 1 000 | 2 000 | 78 | | 4 | 380 | 880 | 1 300 | 2 200 | 630 x 400 | 2 000 | 3 800 | 70 | YBVS 2, 3, 4 # YBVR Air Handling Unit characteristics Available sizes Airflow range (m³/h) 500 ~ 5 000 · offices, houses, shops Application kindergatrens · public utility buildings, etc · G4, M5, F7 class filters Basic options · heat recovery - rotary heat exchanger · water / electric heater · 2 EC fans modules SMART EQUIPMENT™ automation module Additional options · automation module designed to cooperate with a larger BMS system Heat recovery · rotary heat exchanger Installation type · indoors Other features self-supporting housing structure · ducts connected from the top · plug&play inistallation type · low noise level # System advantages - · Easy and simple installation (plug&play) - Reduced cost of operation due to high-effinciency heat exchanger with 90% recovery - · Low noise level - · Attractive and minimalistic style - Ensured supply of a suitable volume of fresh and additionally cleaned air - Ensured high quality air and good effect on the health of people staying rooms - Automatic components supplied with Johnson Controls Factory Packaged Controls The **YBVR** unit has fans with EC motors. Supply fan removes contaminated warm air from the room and the exhaust fan, transports cold feed air. Both streams are decontaminated on filters and pass through the rotary wheel heat exchanger, where heat is exchanged between the streams. Additionally, fresh air, after passing through the rotary wheel exchanger, is heated by an electrical or water heater to the required temperature of the supplied air. | Dimensions [mm] | | | | | | | nge [m³/h] | |-----------------|----------------|------------|-------------|-------------|--|-------|------------| | Unit
size | Weight
[kg] | Width
B | Height
H | Length
L | Flexible connections,
dampers B x H | min | max | | 1 | 180 | 750 | 900 | 1 400 | 300 x 200 | 500 | 1 200 | | 2 | 270 | 900 | 1 100 | 1 700 | 400 x 200 | 900 | 2 100 | | 3 | 360 | 1 100 | 1 250 | 1 800 | 600 x 300 | 1 450 | 3 500 | | 4 | 440 | 1 200 | 1 400 | 2 050 | 800 x 400 | 2 100 | 5 000 | # YBVD Air Handling Unit characteristics | Available sizes | 2 | |----------------------|--| | Airflow range (m³/h) | 800 ~ 1 200 | | Application | offices kindergatrens houses, shops public utility buildings, etc | | Basic options | G4 class filter heat recovery - counter-flow/cross-flow heat exchanger 2 EC fans modules SMART EQUIPMENT™ automation module | | Additional options | cooling section automation module designed to cooperate with a larger BMS system | | Heat recovery | · counter-flow heat exchanger
· cross-flow heat exchanger | | Installation type | ·indoors | | Other features | self-supporting housing structureplug&play inistallation typelow noise level | | | Dimensions [mm] | | | | | | | | |--------------|------------------------|------------|-------------|-------------|------------------------------------|----------------------|-----------------------|--| | Unit
size | Weight
[kg] | Width
B | Height
H | Length
L | Flexible connections, dampers Ø mm | Airflow range [m³/h] | Max efficiency
[%] | | | | Counter-flow exchanger | | | | | | | | | 1 | 150 | 560 | 1 009 | 1 459 | 350 | 800 | 90 | | | 2 | 180 | 760 | 1 009 | 1 459 | 350 | 1 200 | 90 | | | | | | | Cro | oss-flow exchanger | | | | | 1 | 130 | 560 | 1 009 | 1 213 | 350 | 800 | 82 | | | 2 | 170 | 860 | 1 009 | 1 213 | 350 | 1 200 | 82 | | # YTA Adiabatic Air Handling Unit YTA series units utilise free cooling with adiabatic cooling to ensure high system energy savings. The YTA series units are the ideal solution to cool air in systems where environmental sustainability and energy savings are priorities, such as large, best-of-breed data centers, ensuring a performance similar to direct **FREE COOLING** without however contaminating air-conditioned premises, with air contains pollutants, dust, and humidity. The units are designed to be installed outdoors, typically on the roof, and consist of two treatment sections, one for inside air and another for outside air, physically separated and with two filtering, ventilating and completely independent sections. ## **Features** - EUROVENT certified Plate Heat Exchanger - · OXYVAP® evaporative panel - · White RAL 9010 metal structure - · Panels with 50-mm thermal and acoustic insulation - G4-class efficiency air filters with dirty filter alert - Electronic EC FANS - · Electric panel complete with control and safety devices - Control microprocessor with graphic display - \cdot Unit shutdown system for the presence of fire - · RS485 Modbus® RTU slave card - · RJ45 ethernet card # Indirect free cooling with adiabatic cooling The indirect FREE COOLING system with adiabatic cooling includes both the technology of air-to-air heat recovery and that of adiabatic cooling, in which some water is evaporated to cool down outside air. Being able to exploit the FREE COOLING system even at temperatures of 30°C/35%Rh, these units achieve very high energy efficiency, offering energy savings of up to 80% compared to a comparative to a mechanical cooling system. # An innovative evaporative panel In order to maximise the system efficiency, an innovative evaporative panel is used that allows saturation efficiency greater than 90% using more than 60% less water. Thanks to the OXYVAP® system, formed by special formed and treated aluminium fins, it is possible to: - · Use drinkable water. No expensive water demineralisation systems are required. - Cut down on water consumption. Over 60% water reduction with respect to conventional evaporative panels and spraying systems. - · Eliminate the risk of mould, algae and pathogenic organism formation. The surface treatment of aluminium fins and the absence of a collection and water circulation tank eliminates the risk of pathogenic organism formation. #### Available accessories #### Direct expansion: - · Direct expansion, supplementary post cooling circuit with DC inverter compressors - Power supply line for remote condenser - Power supply line with speed regulator for remote condenser - Condensing regulation with 0-10V signal for remote condenser with - "LT Kit" for operation with low temperature outside air with remote condenser - · Oversize liquid receiver - · Check valves on the supply and liquid pipes - · Water-cooled condenser - · Water-cooled condenser with a condensing temperature adjustment - "HT Kit" for operation at high condensing temperatures #### Chilled water: - · Chilled water, supplementary post cooling circuit with adjustment two-way valve - Three-way control valves - · Inlet and outlet water temperature sensors - · "Power valve" kit #### Mechanical and structural: - · Condensate drain and adiabatic panel discharge pump - Outside air flow motorised dampers - Inside air flow motorised dampers - · Motorised damper for environment overpressure management - · M5 efficiency class air filters #### **Electrical:** - Alternative voltages available: 460V/3ph/60Hz 380V/3ph/60Hz -230V/3ph/60Hz - · Electrical supply line without neutral - Automatic transfer switch (ATS), "Basic" version - · Automatic transfer switch (ATS), "Advanced" version #### Regulation: - · Constant air flow control - · Constant pressure control - · Local network set up and connection cable - · User terminal for remote installation - · Flooding detection system # YORK® Fan Coil units Driven by innovative trends and modern technology, the YORK® Fan Coil Units have been designed around a platform of models, versions and accessories, which have been independently tested and certified by Eurovent. The YORK® Fan Coil range meets today's demanding requirements of performance, size, acoustics, low energy, ease of installation and maintenance. ### An extensive offering - One of the **most versatile** ranges of fan coils on the market today. Wall and ceiling mounted units, exposed or concealed with centrifugal fan, are included, and with cooling capacities ranging from 0.6 kW to 9.7 kW. - Dramatic **electrical consumption reduction** of up to 40% comparative to previous models. This is achieved thanks to the supply of all YORK® Fan Coil Units equipped with centrifugal fans and electric motors, and with 6 speed motors as standard to offer greater flexibility in the selection of products. - Energy saving brushless motor technology option available. Its combination with a dedicated frequency inverter and unit controller to regulate the fan speed enables higher efficiencies, even at low rotational speeds, lower unit noise, constant speed characteristics and an increase in motor lifetime expectancy. In comparison to the traditional units equipped with asynchronous three-speedmotors, units with brushless motors can obtain a considerable energy saving, by reducing the power consumption by up to 70%. - A full range of **factory fitted Johnson Controls valve and pre-configured control options** is offered. This in addition to a patented 'wireless' control option offering greater flexibility in the installation of units, with the
highest precision in monitoring and maintaining the desired comfort conditions. - Many of our ranges our available configured for use with 60Hz voltage, and specially designed cooling coils for **District Cooling applications**. - **High pressure 'Blower' units** are also available. They can offer up to 29.4 kW of cooling at External Static Pressures of up to 250Pa, and are complemented with a full range of options and accessories covering items such as electrical heating battery, air inlet/outlet diffusers and condensate pumps. ### Iconography Infrared or Wired control Wired control Dry mode Timer Auto Restart Sleep mode Auto Sweep Ducted Installation 4 Way Air Flow Air Filter ## YFCN Fan Coil Unit centrifugal fan 2 & 4 pipe system A complete range from 0.7 kW to 7.4 kW YFCN is a range of Fan Coil Units that continues the YORK® tradition based on high reliability and low noise levels. It is the result of great commitment in terms of energy and resouces to offer a more modern product from every angle, while still delivering the convenience of easy access to the filters in all models. Moreover each version has the same internal structure, identical in both horizontal and vertical models, in order to standardise production and guarantee a greater flexibility in distribution and installation. Selection software #### Wired controls JWC-3V Remote three speeds controller JWC-T JWC-3V + Electronic thermostat and Summer/Winter switch JWC-AU Automatic JWC-T JTM-B Digital Automatic Remote controller TMO 503 SV2 Digital Automatic Remote controller to be mounted in the standard light wall hox #### Infrared control **TUC03+ Terminal unit controller** BacNET and N2 Metasys network compatible #### **Features** - New casing, improved aesthetics, suitable for any modern indoor ambient - Full range for all needs: 9 sizes suitable for horizontal or vertical mounting with or without casing - $\boldsymbol{\cdot}$ Low noise operation - · 3 fan speeds (possible choice between 6 fan speeds) - Single piece discharge grid - Several coil choices. Single: 3 or 4 rows; Dual: 3 rows cooling 2 rows heating - Electrical heater optional - · Suction and discharge plenum optional - Factory fitted valve (on/off or modulating) and controller packages - · Painted back panel option - · 4 available versions in all range: - VC = Vertical Discharge with Casing - VCB = Vertical Discharge with Casing (floor installation) - HC = Horizontal Discharge with Casing - CD = Concealed unit without Casing ### YFCN Fan Coil Unit centrifugal fan 0.7 to 7.4 kW ### **Technical features** | Model | | | 140 | 240 | 340 | 440 | 540 | 640 | 740 | 840 | 940 | |--|--------|-----|------|------|------|------|------------------|-------|-------|-------|-------| | | | max | 1.20 | 1.78 | 2.53 | 3.08 | 4.03 | 4.71 | 5.48 | 6.34 | 7.42 | | Total cooling capacity [kW] | (1) | med | 1.00 | 1.41 | 1.87 | 2.25 | 3.21 | 3.81 | 4.56 | 5.63 | 6.41 | | | | min | 0.65 | 1.00 | 1.63 | 1.81 | 2.17 | 2.79 | 3.51 | 3.97 | 4.79 | | | | max | 0.94 | 1.35 | 1.86 | 2.30 | 3.01 | 3.52 | 4.13 | 4.93 | 5.87 | | Sensible cooling capacity [kW] | (1) | med | 0.77 | 1.05 | 1.36 | 1.65 | 2.36 | 2.81 | 3.39 | 4.33 | 4.98 | | | | min | 0.49 | 0.73 | 1.18 | 1.32 | 1.58 | 2.03 | 2.57 | 2.98 | 3.63 | | | | max | 212 | 311 | 442 | 537 | 703 | 824 | 960 | 1 113 | 1 307 | | Water flow in cooling [I/h] | (1) | med | 175 | 246 | 325 | 392 | 559 | 664 | 798 | 986 | 1 125 | | | | min | 115 | 174 | 284 | 315 | 377 | 487 | 612 | 693 | 839 | | | | max | 5.6 | 13.9 | 11.5 | 15.5 | 31.3 | 36.2 | 27.7 | 32.2 | 23.2 | | Pressure drop in cooling [kPa] | (1) | med | 4 | 9.1 | 6.7 | 9 | 20.8 | 24.8 | 20 | 26.0 | 17.8 | | | | min | 1.9 | 4.9 | 5.3 | 6.1 | 10.4 | 14.4 | 12.5 | 14.0 | 10.6 | | | | max | 1.31 | 1.83 | 2.59 | 3.14 | 4.01 | 4.92 | 5.59 | 7.20 | 8.52 | | Heating capacity 2 pipes [kW] | (2) | med | 1.07 | 1.43 | 1.87 | 2.27 | 3.16 | 3.90 | 4.62 | 6.27 | 7.18 | | | | min | 0.69 | 0.99 | 1.62 | 1.80 | 2.10 | 2.82 | 3.49 | 4.26 | 5.23 | | | | max | 212 | 311 | 442 | 537 | 703 | 824 | 960 | 1 113 | 1 307 | | Water flow in heating 2 pipes [I/h] * | (2) | med | 175 | 246 | 325 | 392 | 559 | 664 | 798 | 986 | 1 125 | | water now in heating 2 pipes [i/ii] (2 | | min | 115 | 174 | 284 | 315 | 377 | 487 | 612 | 693 | 839 | | | | max | 5.3 | 11.8 | 9.8 | 12.8 | 25.2 | 31.8 | 23.2 | 31.7 | 23.7 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 3.7 | 7.6 | 5.4 | 7.2 | 16.6 | 21.1 | 16.6 | 24.9 | 17.6 | | | | min | 1.7 | 4.0 | 4.2 | 5.0 | 8.1 | 11.9 | 10.1 | 12.8 | 10.0 | | | | max | 220 | 295 | 385 | 485 | 650 | 760 | 925 | 1 200 | 1 500 | | Air flow [m3/h] | | med | 175 | 220 | 270 | 335 | 495 | 590 | 735 | 1 020 | 1 210 | | | | min | 105 | 145 | 235 | 265 | 315 | 415 | 535 | 655 | 830 | | | | max | 45 | 47 | 49 | 47 | 48 | 52 | 56 | 60 | 64 | | Sound power level [dB(A)] | | med | 39 | 40 | 40 | 39 | 41 | 46 | 51 | 56 | 58 | | | | min | 32 | 30 | 36 | 33 | 31 | 37 | 42 | 45 | 50 | | | | max | 36 | 38 | 40 | 38 | 39 | 43 | 47 | 51 | 55 | | Sound pressure level [dB(A)] | (3) | med | 30 | 31 | 31 | 30 | 32 | 37 | 42 | 47 | 49 | | | | min | 23 | 21 | 27 | 24 | 22 | 28 | 33 | 36 | 41 | | Power supply [V-ph-Hz] | | | | | | | 230 / 1 / 50 + E | | | ı | | | Power input [W] | | max | 33 | 40 | 49 | 57 | 61 | 88 | 103 | 130 | 176 | | Absorbed current [A] | | max | 0.16 | 0.18 | 0.23 | 0.26 | 0.27 | 0.39 | 0.47 | 0.58 | 0.78 | | | Height | mm | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | | Dimensions ** | Width | mm | 670 | 770 | 985 | 985 | 1 200 | 1 200 | 1 415 | 1 415 | 1 415 | | | Depth | mm | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 255 | 255 | 111 ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C. (2) Room temperature 20°C - Water temperature 45/40 °C. (3) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397. ** Dimensions refer to the units with casing. Data shown is for 4 row cooling version, 2 pipe system. For performance of 3 row cooling version and/or 4 pipe system unit please contact your local Johnson Controls sales office. ### **ECM Technology** ### Running costs. Energy consumption. Life cycle. These are 3 issues that are becoming more and more important in the choice of Fan Coil Units. With these criteria in mind, Johnson Controls offers the ECM range of FCU. ECM technology comprises a **brushless motor** combined to a **dedicated electronic device** (inverter). In comparison to conventional units equipped with asynchronous three-speed motors, the fancoil and cassette units with brushless motors can obtain a considerable energy saving, by **reducing power consumption up to 70%**. Air flow rate can be varied in continuous by means of a 0-10 V signal generated both by our controls or by independent controls systems. The continuous air flow control improves the **acoustic comfort** and allows a more punctual reply to the variation of the thermal loads, enhancing the **stability of ambient temperature**. ### **Technology** ECM technology consists of a brushless motor combined with an inverter managed by specific regulators. The controller uses a 0–10 VDC modulating signal to regulate the fan speed. The brushless electric motor is composed of a rotor having permanent magnets, whose magnetic fields interact with the ones produced by the stator winding. The **transfer of current is no longer by mechanical commutator** (sliding contacts) **but by an electronic commutation system**: one electronic controller (inverter) powers the motor's stator and generates rotating magnetic fields, that in turn determine the rotor's speed. Brusless motor develop much less heat than the traditional brushed motors and they have much lower mechanical resistance than the standard asynchronous maintenance. The absence of brushes eliminates also the main source of electromagnetic noise. ### **Features** - · Brushless motor with inverter. - 0-10VDC control signal. - · Low mechanical resistance and heat gain - · Continuous regulation of the fan speed. - Specifically designed electronic and digital regulators, also for BMS systems. - Possibility to manually set the desired three fan speeds (MIN/MED/MAX). - · Available for fan coil and cassette units. #### Advantages (compared to traditional brushed motors) - Energy saving: electrical absorption reduced up to 70%. - Higher efficiency: possibility to adapt the air volume and the capacities accordingly to the actual room loads. - Higher comfort: reduced variation of the temperature and relative humidity in the room. - · Extremely quiet operation. - · Reduced wear and higher reliability. - · Longer life expectancy of the motor. ### Power consumption: YFCN versus YFCN-ECM (W/kW) ### YFCN-ECM Fan Coil Unit Inverter with centrifugal fan 0.7 to 7.1 kW ### **Technical features** | Model | | | 230 | 240 | 430 | 440 | 630 | 640 | 730 | 740 | 930 | 940 | |---|--------|------------|------|------|------|------|-------|----------|-------|-------|-------|-------| | | | max 10v | 1.59 | 1.86 | 2.95 | 3.17 | 3.96 | 4.51 | 4.94 | 5.30 | 6.26 | 7.04 | | Total cooling capacity [kW] | (1) | med 5v | 1.18 | 1.32 | 2.18 | 2.27 | 2.93 | 3.19 | 3.68 | 3.82 | 4.82 | 5.21 | | | | min 1v | 0.73 | 0.77 | 1.41 | 1.43 | 1.96 | 2.05 | 2.60 | 2.61 | 3.45 | 3.59 | | | | max | 1.28 | 1.42 | 2.26 | 2.39 | 3.08 | 3.38 | 3.80 | 3.99 | 5.10 | 5.53 | | Sensible cooling capacity [kW] | (1) | med | 0.92 | 0.98 | 1.64 | 1.67 | 2.22 | 2.34 | 2.77 | 2.82 | 3.79 | 3.99 | | | | min | 0.55 | 0.56 | 1.03 | 1.03 | 1.46 | 1.48 | 1.92 | 1.90 | 2.63 | 2.69 | | | | max | 277 | 323 | 511 | 549 | 686 | 781 | 857 | 918 | 1 094 | 1 228 | | Water flow in cooling [I/h] | (1) | med | 205 | 229 | 377 | 392 | 506 | 550 | 636 | 660 | 836 | 903 | | | | min | 127 |
134 | 244 | 248 | 339 | 354 | 449 | 451 | 597 | 621 | | | | max | 8.6 | 14.8 | 28.9 | 16.1 | 19 | 33 | 32.6 | 25.6 | 25.9 | 20.8 | | Pressure drop in cooling [kPa] | (1) | med | 5.1 | 8 | 17 | 8.9 | 11.1 | 17.8 | 19.4 | 14.3 | 16.1 | 12.1 | | , 0 | | min | 2.2 | 3.2 | 7.9 | 4 | 5.5 | 8.2 | 10.5 | 7.3 | 8.9 | 6.3 | | | | max | 1.80 | 1.98 | 3.14 | 3.32 | 4.14 | 4.68 | 5.08 | 5.43 | 7.38 | 7.93 | | Heating capacity 2 pipes [kW] | (2) | med | 1.29 | 1.37 | 2.26 | 2.30 | 3.00 | 3.23 | 3.72 | 3.84 | 5.41 | 5.63 | | 0 1 7 1 1 1 1 1 | . , | min | 0.77 | 0.78 | 1.42 | 1.42 | 1.96 | 2.02 | 2.56 | 2.57 | 3.74 | 3.76 | | | | max | 277 | 323 | 511 | 549 | 686 | 781 | 857 | 918 | 1 094 | 1 228 | | Water flow in heating 2 pipes [I/h] * | (2) | med | 205 | 229 | 377 | 392 | 506 | 550 | 636 | 660 | 836 | 903 | | | (-) | min | 127 | 134 | 244 | 248 | 339 | 354 | 449 | 451 | 597 | 621 | | | | max | 7.0 | 13.6 | 26.7 | 13.7 | 17.0 | 29.1 | 28.3 | 22.0 | 24.2 | 20.9 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 3.9 | 7.1 | 14.9 | 7.3 | 9.6 | 15.1 | 16.4 | 12.0 | 14.0 | 11.4 | | | () | min | 1.6 | 2.6 | 6.6 | 3.1 | 4.5 | 6.6 | 8.5 | 5.9 | 7.3 | 5.6 | | | | max | 1.43 | - | 2.41 | - | 3.22 | - | 4.06 | - | 5.24 | - | | Heating capacity 4 pipes [kW] (3) | (3) | med | 1.08 | - | 1.85 | - | 2.45 | - | 3.12 | - | 4.05 | - | | | (-) | min | 0.71 | - | 1.29 | - | 1.76 | - | 2.33 | - | 2.99 | - | | | | max | 140 | - | 236 | _ | 317 | - | 398 | - | 514 | - | | Water flow in heating 4 pipes [I/h] | (3) | med | 106 | - | 181 | - | 241 | - | 306 | - | 397 | - | | | (-) | min | 70 | - | 126 | _ | 172 | - | 228 | - | 292 | _ | | | | max | 3.5 | _ | 11.0 | _ | 3.6 | - | 6.3 | _ | 9.9 | _ | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 2.1 | _ | 6.9 | _ | 2.2 | _ | 4.0 | _ | 6.3 | - | | Tressure grop in negging 4 pipes [ki d] | (3) | min | 1.0 | - | 3.6 | - | 1.2 | - | 2.4 | - | 3.7 | - | | | | max | 330 | 325 | 515 | 505 | 735 | 720 | 890 | 875 | 1 395 | 1 365 | | Air flow [m3/h] | | med | 220 | 210 | 350 | 340 | 495 | 475 | 610 | 585 | 945 | 910 | | 7 th now [mo/n] | | min | 120 | 115 | 210 | 200 | 305 | 290 | 400 | 380 | 605 | 575 | | | | max | 51 | 51 | 51 | 51 | 54 | 54 | 57 | 57 | 64 | 64 | | Sound power level [dB(A)] | | med | 41 | 41 | 42 | 42 | 44 | 44 | 48 | 48 | 55 | 55 | | Souria power lever [ab(A)] | | min | 30 | 30 | 30 | 30 | 33 | 33 | 37 | 37 | 44 | 44 | | | | | 42 | 42 | 42 | 42 | 45 | 45 | 48 | 48 | 55 | 55 | | Sound pressure level [dB(A)] | (4) | max
med | 32 | 32 | 33 | 33 | 35 | 35 | 39 | 39 | 46 | 46 | | Journa pressure lever [ub(A)] | (4) | | 21 | 21 | 21 | 21 | 24 | 24 | 28 | 28 | 35 | 35 | | Power supply [V-ph-Hz] | | min | 21 | 21 | 21 | 21 | | / 50 + E | 20 | 20 | 33 | 33 | | Power input [W] | | may | 21 | 21 | 25 | 25 | 32 | 32 | 41 | 41 | 99 | 99 | | Absorbed current [A] | | max | 0.18 | 0.18 | 0.22 | 0.22 | 0.28 | 0.28 | 0.34 | 0.34 | 0.81 | 0.81 | | Ausorbed current [A] | Hojek | max | | 1 1 | | | | | | | | | | Dimensions ** | Height | | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | | Dimensions ** | Width | mm | 770 | 770 | 985 | 985 | 1 200 | 1 200 | 1 415 | 1 415 | 1 415 | 1 415 | | | Depth | mm | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 255 | 255 | ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C (2) Room temperature 20°C - Water temperature 45/40 °C (3) Room temperature 20°C - Water temperature: 65/55°C (4) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 ** Dimensions refer to the units with casing ### Compatibility table / Codes | Model | YFC | N AC motor + Standard control devi | ices | | | |---|---------------------------------------|------------------------------------|-----------------------|--|--| | Versions | VC/VCB mod Vertical with casing | HC mod Horizontal with casing | CD mod Without casing | | | | Controls for style VC (supplied with separate p | packaging) | | | | | | Three speed control BL (1) | 9060130 | - | - | | | | Three speed control + electronic thermostat and S/W switch TMV-S (2) | 9060140 | - | - | | | | Three speed control + electronic thermostat and centralized S/W - TLC (2) | 9060133 | - | - | | | | Automatic speed control with electronic thermostat and S/W switch ATL (2) | 9066139 | - | - | | | | Controls for style HC/CD (supplied with separa | ite packaging) | | | | | | Remote three speed control JWC-3V (1) (5) | - | 9066642 | 9066642 | | | | Remote three speed control + electronic thermostat JWC-T and manual S/W switch (2) | - | 9066630K | 9066630K | | | | Remote three speed control + electronic thermostat and centralized/manual S/W switch JWC-TQR (2) (4) | - | 9066631K | 9066631K | | | | Automatic speed control with electronic thermostat and S/W switch – JWC-AU (to be used with JPF-AU and JP-AU only) (2) (4) | - | 9066632K | 9066632K | | | | Automatic remote control with electronic thermostat, S/W switch and liquid crystall display JTM-B (to be used with IPF-AU and JP-AU only) (2) (4) | - | 9066331E | 9066331E | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with JP-503 only) | - | 9066676E | 9066676E | | | | Electromechanical thermostat T2T (5) (6) | - | 9060174 | 9060174 | | | | Power unit JPF-AU for JWC-AU and JTM-B remote controls, itted on the unit | 9066641 | 9066641 | 9066641 | | | | Power unit JP-AU for JWC-AU and JTM-B remote controls, not fitted on the unit | 9066640 | 9066640 | 9066640 | | | | Power unit UP-503 for WM-503 remote control only, not fitted on the unit | 9066677 | 9066677 | 9066677 | | | | Controls accessories for all versions (supplied | with separate packaging) | | | | | | ow temperature cut-out for controls TLC | 3021091 | 3021091 | 3021091 | | | | ow temperature cut-out for controls TMV-S, JWC-3V and WC-T | 9053048 | 9053048 | 9053048 | | | | ow temperature cut-out for controls ATL, JWC-TQR, NM-503 and JP-AU power unit | 3021090 | 3021090 | 9053049 | | | | T2 sensor to be used as Change-over for controls ATL and IP-AU power unit | 9025310 | 9025310 | 9025310 | | | | Change-over 15-25 for control TLC and JWC-TQR | 9053049 | 9053049 | 9053049 | | | | Receiving speed selector for centralized control (slave) tyle VC RECV | 9060136 | 9060136 | 9060136 | | | | Receiving speed selector for centralized control (slave) style HC/CD SEL-CR | 9066311 | 9066311 | 9066311 | | | | erminal board adaptor kit KIT | 9060103 | - | - | | | | Controls for style VC + additional electric resis | stance (supplied with separate packa | ging) | | | | | Three speed control with electronic thermostat and S/W witch TMV-R-IAQ | 9063006 | - | - | | | | Automatic speed control with electronic thermostat and S/W switch JWC-AU (2) | - | 9066 | 632K | | | | Controls for style HC/CD + additional electric r | resistance (supplied with separate pa | ackaging) | | | | | Remote three speed control + electronic thermostat and centralized/manual S/W switch JWC-TQR (3) | - | 9066631K | 9066631K | | | | Automatic speed control with electronic thermostat | - | 9066632K | 9066632K | | | | and centralized S/W - JWC-AU (3) | | | | | | WARNING (1) Not to be used with valves. (2) Can be used with valves and/or low temperature cut-out. (3) Low temperature cut-out included. (4) Can be used with Change Over. (5) Not suitable with -E electric heater. (6) Not to be used with low temperature cut-out. ### Compatibility table / Codes | Model | YFCN AC motor + MB control devices | |--|---| | Versions | ALL VERSIONS: VC/VCB - Vertical w. casing + HC - Horizontal with casing + CD without casing | | | ALL VERSIONS: VC/VCB + HC + CD with electric heater | | Controls and accessories for all versions | | | Mounted power unit MB-M | 9066332 | | Not mounted power unit MB-S | 9066333 | | Wall control JTM-B | 9066331E | | IR remote control and mounted IR receiver RM-RT03 | 9066336 | | IR remote control and not mounted IR receiver RS-RT03 | 9066337 | | IR remote control RT03 | 3021203 | | Mounted IR receiver RM | 9066339 | | Not mounted IR receiver RS | 9066338 | | Multifunction wall control up to 60 units PSM-DI | 3021293 | | T2 sensor (to be used as Change-over or minimum temp. Sensor) | 9025310 | | Management system for a network of fan coils with MB ele | ectronic board | | Hardware/software supervisory system (to be used with MB board only) NET | 9079118 | | Router-S for NET (default) or for BMS systems no provided by YORK | 3021290 | | Relay output board SIOS | 3021292 | ### With T-MB wall control One control for each unit (Maximum length of the connection cable = 20 m) One control for more units (20 units max.) (Maximum total length of the connection cable = 800 m) ### With RT03 Infra-red remote control One control for each unit One control for more units (20 units max.) (Maximum total length of the connection cable = 800 m) | Model | YFCN | I ECM motor + Standard control dev | ices | |---|-------------------------------------|------------------------------------|-----------------------| | Versions | VC/VCB mod Vertical with casing | HC mod Horizontal with casing | CD mod Without casing | | Controls accessories for all versions (supplied | with separate packaging) | | | | Low temperature cut out NTC
for control TMV-T-ECM, WM-S-ECM and JP-AU power unit | | 3021090 | | | T2 sensor to be used as Change -over for JP-AU power unit | | 9025310 | | | Change over CH 15-25 for control TMV-T-ECM
| | 9053049 | | | Model | Y | FCN ECM motor + MB control device | s | | Versions | VC/VCB mod Vertical with casing | HC mod Horizontal with casing | CD mod Without casing | | Controls for style VC (supplied with separate p | packaging) | - 1 | | | Continuous fan speed control with electronic thermostat and S/W switch TMV-T-ECM | 9060141 | - | - | | Controls for style HC/CD (supplied with separa | te packaging) | | | | JWC-AU Automatic speed control with electronic thermostat and centralized S/W switch (1) (2) | - | 9066632K | 9066632K | | JTM-B Automatic remote control with electronic thermostat, S/W switch and liquid crystall display (1) (2) | - | 9066331E | 9066331E | | WM-S-ECM Continuous fan speed control with S/W switch and liquid crystall display | - | 9066644 | 9066644 | | JPF-AU power unit for JWC-AU and JTM-AU remote controls, fitted on the unit | 9066641 | 9066641 | 9066641 | | JP-AU power unit for JWC-AU and JTM-AU remote controls, not fitted on the unit | 9066640 | 9066640 | 9066640 | | Accessories of controls for VC, HC-VCB and CI | o models (supplied with separate pa | ckaging) | | | MB-ECM-M mounted power unit for ECM fan coil | 9066334 | 9066334 | 9066334 | | MB-ECM-S not mounted power unit for ECM fan coil | 9066335 | 9066335 | 9066335 | | Wall control JTM-B | 9066331E | 9066331E | 9066331E | | IR remote control and mounted IR receiver RM-RT03 | 9066336 | 9066336 | 9066336 | | R remote control and not mounted IR receiver RS-RT03 | 9066337 | 9066337 | 9066337 | | R remote control RT03 | 3021203 | 3021203 | 3021203 | | Mounted IR receiver RM | 9066339 | 9066339 | 9066339 | | Not mounted IR receiver RS | 9066338 | 9066338 | 9066338 | | Multifunction wall control up to 60 units PSM-DI | 3021293 | 3021293 | 3021293 | | T2 sensor (to be used as Change-over or minimum temperature Sensor) | 9025310 | 9025310 | 9025310 | | Management system for a network of fan coils | s with MB electronic board | | | | Hardware / software supervisory system Net | 9079118 | 9079118 | 9079118 | | Router-S for NET (default) or for BMS systems no provided by YORK | 3021290 | 3021290 | 3021290 | | Relay output board SIOS | 3021292 | 3021292 | 3021292 | ⁽¹⁾ Can be used with valves and/or low temperature cut-out. (2) Can be used with Change Over. | Model | | | | YFCN C | Seneral acc | essories | | | | |---|----------|----------|---------|---------|-------------|----------|---------|----------|--------| | Sizes | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/94 | | Valves all versions | | | | | | | | | | | 3 way double valve kit for 4 tube installation and single coil + kit fitted on the unit | | | | | 9066572W | | | | | | 3 way double valve kit for 4 tube installation and single coil + kit not fitted on the unit | | | | | 9066562W | | | | | | Kit 3 way valve mounted | | | 9066561 | | | | 906 | 60471 | | | Kit 3 way valve additional battery mounted | | | | | 9060472 | | | | | | Kit 3 way valve not mounted | | | 9066560 | | | | 906 | 60474 | | | Kit 3 way valve additional battery not mounted | | | | | 9060475 | | | | | | Kit 2 way valve primary and/or additional battery mounted | | | 9060476 | | | | | - | | | Kit 2 way valve primary battery mounted | | | - | | | | 906 | 60477 | | | Kit 2 way valve primary and/or additional battery not mounted | | | 9060478 | | | | | - | | | Kit 2 way valve primary battery not mounted | | | - | | | | 906 | 60479 | | | 2 way DN 10 balance valve for main coil + kit fitted on the unit | | 9066660 | | | | | - | | | | 2 way DN 15 balance valve for main coil + kit fitted on the unit | | - | | | 906 | 6661 | | | - | | 2 way DN 20 balance valve for main coil + kit fitted on the unit | | | | - | | | | 906 | 6662 | | 2 way DN 10 balance valve for additional coil + kit fitted on the unit | | | 9066663 | | | | | - | | | 2 way DN 15 balance valve for additional coil + kit fitted on the unit | | | - | | | | 906 | 66664 | | | 2 way DN 10 balance valve for main coil + kit not fitted on the unit | | 9066650 | | | | | - | | | | 2 way DN 15 balance valve for main coil + kit not fitted on the unit | - | | | | 906 | 6651 | | | - | | 2 way DN 20 balance valve for main coil + kit not fitted on the unit | | | | - | | | | 906 | 6652 | | 2 way DN 10 balance valve for additional coil + kit not fitted on the unit | | | 9066653 | | | | | - | | | 2 way DN 15 balance valve for additional coil + kit not fitted on the unit | | | - | | 9066654 | | | | | | Valves CD versions only | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/94 | | Semplified 3-way valve kit for CD version fitted | | | 9066571 | | | | | 0484 | | | Semplified 3-way valve kit for CD version not fitted | | | 9066570 | | 2222122 | | 906 | 0481 | | | Semplified 3-way valve kit for CD version not fitted - additional battery | | | | | 9060480 | | | | | | Electric heater VC/VCB/CH version | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/94 | | El. resistance and relays fitted on the unit (650 W) VC/HC | 9066491E | | | | | - | | | | | El. resistance and relays fitted on the unit (400 W) VC/HC | - | 9066472E | | | | - | | | | | El. resistance and relays fitted on the unit (600 W) VC/HC | - | 9066482E | 9066 | 6473E | | | - | | | | El. resistance and relays fitted on the unit (750 W) VC/HC | | | - | | 9066 | 5475E | | - | | | El. resistance and relays fitted on the unit (900 W) VC/HC | | - | 9066 | 5483E | | | - | | | | El. resistance and relays fitted on the unit (1000 W) VC/HC | - | 9066492E | | | - | | | 9066477E | | | El. resistance and relays fitted on the unit (1250 W) VC/HC | | | - | | 9066 | 5485E | | - | | | El. resistance and relays fitted on the unit (1500 W) VC/HC | | - | 9066 | 6493E | | - | | 9066487E | | | El. resistance and relays fitted on the unit (2000 W) VC/HC | | | - | | 9066 | 5495E | | - | | | El. resistance and relays fitted on the unit (2500 W) VC/HC | 404 1 | | | - | | | | 9066497E | | | Electric heater CD version | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/94 | | El. resistance and relays fitted on the unit (700 W) CD | 9066611 | 00.555 | | | | - | | | | | El. resistance and relays fitted on the unit (400 W) CD | - | 9066592 | | | I | - | | | | | El. resistance and relays fitted on the unit (600 W) CD | - | 9066602 | 906 | 6593 | _ | | - | | | | El. resistance and relays fitted on the unit (750 W) CD | | | - | | 906 | 6595 | | - | | | El. resistance and relays fitted on the unit (900 W) CD | | - | 906 | 6603 | | | - | | | | El. resistance and relays fitted on the unit (1000 W) CD | - | 9066612 | | | - | | | 9066597 | | | El. resistance and relays fitted on the unit (1250 W) CD | | | - | | 906 | 6605 | | - | | | El. resistance and relays fitted on the unit (1500 W) CD | | - | 906 | 6613 | | - | | 9066607 | | | El. resistance and relays fitted on the unit (2000 W) CD | | | - | | 906 | 6615 | | - | | | El. resistance and relays fitted on the unit (2500 W) CD | T | | | | | | | 9066617 | | | Model | | | | YFCN (| General acce | essories | | | | | | | | |---|---------------------------------|---------|---------|---------|--------------|----------|-----------------|---------|---------|--|--|--|--| | Sizes | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/940 | | | | | | Accessories for all versions | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/940 | | | | | | Pair feet | | | | 9060150 | | | | 906 | 0151 | | | | | | Vertical auxiliary condensate tray | | | | | 6060400 | | | | | | | | | | Horizontal auxiliary condensate tray for HC (left connections) | | | | | 6060402 | | | | | | | | | | Horizontal auxiliary condensate tray for HC (right connections) | | | | | 6060403 | | | | | | | | | | Horizontal auxiliary condensate tray for CD | | | | | 6066039 | | | | | | | | | | Condensate pump for VC – VCB – CD fitted on the unit auxiliary condensate collection tray included (vertical installation) | | 9066297 | | | | | | | | | | | | | Condensate pump for VC - VCB - CD not fitted on the unit auxiliary condensate collection tray included (vertical installation) | | | | | 9066296 | | | | | | | | | | Condensate pump for HD fitted on the unit auxiliary condensate collection tray to be ordered separately (horizontal installation) | | | | | 9066295 | | | | | | | | | | Condensate pump for CD not fitted on the unit auxiliary condensate collection tray included (horizontal installation) | | | | | 9066180 | | | | | | | | | | Condensate drain pipe | | | | | 6060420 | | | | | | | | | | Damper | 9066531 | 9066532 | 9066 | 5533 | 906 | 6535 | 9066537 | 906 | 6538 | | | | | | Kit breeze | - | 9076452 | 9076 | 6453 | 907 | 6455 | | - | | | | | | | Recessed box | - | 9076462 | 9076 | 5463 | 907 | 6465 | | - | | | | | | | Rear closing panel VC | 9062005 | 9060180 | 9060 | 0181 | 906 | 0182 | | 9060183 | | | | | | | Rear closing panel HC | 9060187 | 9060190 | 9060 | 0191 | 9060192 | | 9060193 906019 | | 0194 | | | | | | Frontal air intake CD mounted | 9066501 | 9066502 | 906 | 5503 | 906 | 6505 | 9066507 9066508 | | | | | | | | Intake grid for VC | 9060229 | 9060230 | 9060 | 0231 | 906 | 0232 | 9060233 | | | | | | | | Adaptor for terminal board VC for remote control | | | | | 9060103 | | | | | | | | | | Accessories only for concealed version CD | 130/140 | 230/240 | 330/340 | 430/440 | 530/540 | 630/640 | 730/740 | 830/840 | 930/940 | | | | | | Outlet flange 90° FM90 | 9066381 | 9066382 | 9066 | 5383 | 906 | 6385 | 9066387 | 906 | 6388 | | | | | | Inlet flange 90° FR90 | 9066441 | 9060710 | 9060 | 0711 | 906 | 0712 | 9060713 | 906 | 0714 | | | | | | Straight inlet flange FRD | 9066451 | 9060720 | 9060 | 0721 | 906 | 0722 | 9060723 | 906 |
0724 | | | | | | Straight outlet flange FMD | 9066371 | 9066372 | 906 | 5373 | 906 | 6375 | 9066377 | 906 | 6378 | | | | | | Outlet spigot diffuser PMC | 9066361 | 9066362 | 9066 | 5363 | 906 | 6365 | 9066367 | 906 | 6368 | | | | | | Air outlet grid BMA | 9066411 | 9060750 | 9060 | 0751 | 906 | 0752 | | 9060753 | | | | | | | Air inlet grid GRAG | 9066431 9060764 9060765 | | 906 | 0766 | | 9060767 | | | | | | | | | Air inlet grid GRAP | 9066421 9060760 9060761 | | 906 | 0762 | | 9060763 | | | | | | | | | Air inlet spigot plenum PRC | 9066461 | 9066462 | 9066 | 5463 | 906 | 6465 | 9066467 | 906 | 6468 | | | | | | Intake grid with filter
(to be used in combination with inlet flange 90°) GRAFP | 9066391 9060770 9060771 9060772 | | | 9060773 | | | | | | | | | | | Intake grid with filter (to be used in combination with straight inlet flange) GRAFG | 9066401 | 9060774 | 9060 | 0775 | 906 | 0776 | 9060777 | | | | | | | ## **Dimensions** ### YFCN / YFCN-ECM 130 to 940 (with casing) All dimensions in mm. Drawings not a scale. | Model | 130 / 140 | 230 / 240 | 330 / 340 | 430 / 440 | 530 / 540 | 630 / 640 | 730 / 740 | 830 / 840 | 930 / 940 | |-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | А | 670 | 770 | 985 | 985 | 1 200 | 1 200 | 1 415 | 1 415 | 1 415 | | В | 225 | 225 | 225 | 225 | 225 | 225 | 225 | 255 | 255 | | С | 354 | 454 | 669 | 669 | 884 | 884 | 1 099 | 1 099 | 1 099 | ### YFCN / YFCN-ECM 130 to 940 (without casing) All dimensions in mm. Drawings not a scale. | Model | 130 / 140 | 230 / 240 | 330 / 340 | 430 / 440 | 530 / 540 | 630 / 640 | 730 / 740 | 830 / 840 | 930 / 940 | |-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | А | 374 | 474 | 689 | 689 | 904 | 904 | 1 119 | 1 119 | 1 119 | | В | 218 | 218 | 218 | 218 | 218 | 218 | 218 | 248 | 248 | | С | 354 | 454 | 669 | 669 | 884 | 884 | 1 099 | 1 099 | 1 099 | 2 & 4 pipe system A complete range from 0.6 kW up to 9.7 kW TUC03+ Terminal unit controller BacNET and N2 Metasys network compatible CSL00 (Built in) CSR00 (Wall mounted) Fan speed selector CML00 (Built in) CMR00 (Wall mounted) Thermostat with manual fan speed and S/W change over CEL00 (Built in) CER00 (Wall mounted) Thermostat with manual fan speed and automatic change over #### CEL20 (Built in) CER20 (Wall mounted) Thermostat with auto. fan speed and automatic change over #### CEL30 (Built in) CER30 (Wall mounted) Thermostat with auto. fan speed and automatic change over for modulating valve LASER fan coil units are simple and elegant, discreet in their design. High standards of quality and reliability, combined with a wide range of accessories ensure a total solution for all comfort cooling and heating requirements. LOW BODY units are part of the LASER Fan Coils Units family. The reduced height cabinet makes them the ideal solution for new or replacement applications where dimensional limitations apply. #### **Features** - · 6 speed fan - Cabinet factory fitted - · Valve factory fitted - · Electrical heater factory fitted - Thermal or modulating valve - Service valve - Option front air intake (LASER) - · Optional plenum (LASER) - ECM inverter option available - $\boldsymbol{\cdot}$ Option for district cooling coil Selection software 0.6 to 9.7 kW ### **Technical features** | Model | | | | | LASER: YL | V, YLV-AF, | YLH, YLH- | AF, YLIV, YI | IV-AF, YLII | H, YLIH-AF | | | |---|--------|--------|------|------|-----------|------------|-----------|--------------|-------------|------------|------|-------| | Sizes | | | 110 | 112 | 114 | 216 | 218 | 220 | 222 | 224 | 226 | 328 | | | | max | 1.11 | 1.59 | 2.14 | 3.30 | 3.50 | 4.44 | 5.07 | 6.43 | 7.25 | 9.73 | | Total cooling capacity [kW] | (1) | med | 0.95 | 1.31 | 1.88 | 2.67 | 2.99 | 3.68 | 4.39 | 5.75 | 6.67 | 8.75 | | | | min | 0.76 | 1.07 | 1.57 | 2.20 | 2.46 | 2.94 | 3.84 | 4.62 | 5.50 | 6.36 | | | | max | 0.93 | 1.25 | 1.90 | 2.46 | 3.06 | 3.53 | 4.42 | 5.06 | 5.70 | 8.04 | | Sensible cooling capacity [kW] | (1) | med | 0.78 | 0.99 | 1.64 | 1.95 | 2.51 | 2.84 | 3.74 | 4.44 | 5.18 | 7.15 | | | | min | 0.61 | 0.79 | 1.33 | 1.56 | 2.00 | 2.20 | 3.20 | 3.45 | 4.15 | 5.03 | | | | max | 191 | 273 | 368 | 568 | 602 | 764 | 872 | 1106 | 1247 | 1674 | | Water flow in cooling [I/h] | (1) | med | 163 | 225 | 323 | 459 | 514 | 633 | 755 | 989 | 1147 | 1505 | | | | min | 131 | 184 | 270 | 378 | 423 | 506 | 660 | 795 | 946 | 1094 | | | | max | 3.4 | 7.1 | 5.8 | 14.8 | 13.6 | 24.1 | 28.4 | 18.8 | 21.0 | 74.6 | | Pressure drop in cooling [kPa] | (1) | med | 2.8 | 5.0 | 4.6 | 12.5 | 9.8 | 17.4 | 21.8 | 15.5 | 18.1 | 61.5 | | . 5: | | min | 2.0 | 3.4 | 3.3 | 8.5 | 6.7 | 11.6 | 17.2 | 10.5 | 12.8 | 30.8 | | | | max | 1.37 | 1.83 | 2.60 | 3.46 | 4.17 | 4.80 | 6.04 | 6.60 | 7.86 | 10.54 | | Heating capacity 2 pipes [kW] | (2) | med | 1.13 | 1.46 | 2.07 | 2.90 | 3.51 | 3.89 | 5.11 | 5.84 | 7.17 | 9.64 | | | | min | 0.87 | 1.14 | 1.70 | 2.31 | 2.83 | 3.01 | 4.41 | 4.58 | 5.76 | 6.73 | | | | max | 236 | 315 | 447 | 595 | 717 | 826 | 1039 | 1135 | 1352 | 1813 | | Water flow in heating 2 pipes [I/h] | (2) | med | 194 | 251 | 356 | 499 | 604 | 669 | 879 | 1004 | 1233 | 1658 | | 0 11 | ` ' | min | 150 | 196 | 292 | 397 | 487 | 518 | 759 | 788 | 991 | 1158 | | | | max | 4.9 | 6.0 | 6.5 | 14.7 | 16.0 | 23.4 | 27.7 | 18.9 | 25.3 | 82.4 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 4.6 | 6.0 | 5.1 | 10.5 | 11.7 | 16.3 | 21.1 | 15.3 | 21.6 | 67.7 | | ressure drop in neutring 2 pipes [ki d] | (-/ | min | 3.0 | 4.1 | 4.0 | 6.9 | 8.1 | 10.8 | 16.4 | 10.3 | 14.9 | 29.7 | | | | max | 0.91 | 1.31 | 1.93 | 2.79 | 3.20 | 4.33 | 4.92 | 6.16 | 6.30 | 8.00 | | eating capacity 4 pipes [kW] (3 | (3) | med | 0.83 | 1.13 | 1.85 | 2.40 | 2.81 | 3.67 | 4.33 | 5.55 | 5.98 | 7.43 | | | (-) | min | 0.71 | 0.95 | 1.51 | 2.06 | 2.38 | 2.99 | 3.84 | 4.55 | 5.03 | 5.83 | | | | max | 78 | 113 | 166 | 240 | 275 | 372 | 423 | 530 | 542 | 688 | | Water flow in heating 4 pipes [I/h] | (3) | med | 71 | 97 | 159 | 206 | 242 | 316 | 372 | 477 | 514 | 639 | | 0 P P 1 1 | (-) | min | 61 | 82 | 130 | 177 | 205 | 257 | 330 | 391 | 433 | 501 | | | | max | 1.3 | 3.4 | 6.7 | 14.7 | 7.1 | 10.3 | 11.7 | 33.0 | 31.7 | 46.5 | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 1.1 | 2.6 | 5.8 | 10.5 | 5.7 | 7.7 | 9.5 | 23.0 | 28.9 | 40.6 | | | (-) | min | 0.9 | 1.8 | 5.2 | 9.4 | 4.0 | 5.4 | 7.7 | 16.3 | 21.4 | 24.7 | | | | max | 243 | 321 | 436 | 581 | 712 | 871 | 1081 | 1254 | 1481 | 2068 | | Air flow [m3/h] | | med | 191 | 249 | 358 | 456 | 592 | 699 | 929 | 1116 | 1352 | 1725 | | | | min | 144 | 194 | 289 | 338 | 474 | 538 | 739 | 798 | 999 | 1070 | | | | max | 48 | 50 | 54 | 53 | 55 | 54 | 60 | 60 | 63 | 67 | | Sound power level [dB(A)] | | med | 42 | 45 | 49 | 47 | 50 | 48 | 56 | 55 | 60 | 63 | | Sound power lever [ab(v)] | | min | 36 | 38 | 42 | 40 | 43 | 40 | 50 | 47 | 53 | 52 | | | | max | 38 | 40 | 44 | 43 | 45 | 44 | 50 | 50 | 53 | 57 | | Sound pressure level [dB(A)] | (4) | med | 32 | 35 | 39 | 37 | 40 | 38 | 47 | 46 | 50 | 53 | | ooda pressure tever [ub(n/j | (7) | min | 26 | 28 | 32 | 30 | 33 | 30 | 40 | 38 | 43 | 42 | | Power supply [V-ph-Hz] | | 1111(1 | 20 | 20 | 34 | 30 | | / 50 + E | | JU | +3 | 74 | | Power input [W] | | max | 46 | 48 | 57 | 61 | 76 | 90 | 117 | 140 | 162 | 213 | | Absorbed current [A] | | max | 0.23 | 0.23 | 0.267 | 0.29 | 0.33 | 0.38 | 0.52 | 0.65 | 0.65 | 1.06 | | Appointed content [A] | Height | | | | | | | | | | | 614 | | Dimonsions | | | 538 | 538 | 538 | 538 | 538 | 614 | 614 | 614 | 614 | 1773 | | Dimensions | Width | mm | 648 | 773 | 898 | 1023 | 1148 | 1273 | 1273 | 1523 | 1523 | | | | Depth | mm | 224 | 224 | 224 | 224 | 224 | 254 | 254 | 254 | 254 | 254 | ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C ⁽⁴⁾ Sound pressure level in a 100 m3 room, at 1.5 m distance and riverberating time of 0.3 s. max = speed 2, med = speed 3, min = speed 5 when using selection software Manufacturer reserves the rights to change specifications without prior notice. ⁽²⁾ Room temperature 20°C - Water inlet temperature: 45/40°C (3) Room temperature 20°C - Water inlet temperature: 765/55°C. 0.6 to 9.7 kW ### **Technical features** | Model | | | | L | OW BODY: YLVR, YLIV | /R | | |--|--------|-----|------|------|---------------------|------|------| | Sizes | | | 110 | 112 | 114 | 216 | 218 | | | | max | 0.98 | 1.16 | 1.74 | 2.53 | 3.06 | | Total cooling capacity [kW] | (1) | med | 0.82 | 0.97 | 1.54 | 2.14 | 2.66 | | | | min | 0.62 | 0.78 | 1.28 | 1.69 | 2.16 | | | | max | 0.86 | 1.07 | 1.49 | 2.15 | 2.58 | | Sensible cooling capacity [kW] | (1) | med | 0.73 | 0.88 | 1.30 | 1.76 | 2.20 | | | | min | 0.53 | 0.68 | 1.09 | 1.41 | 1.77 | | | - | max | 168 | 199 | 299 | 434 | 525 | | Water flow in cooling [I/h] | (1) | med | 141 | 166 | 264 | 367 | 456 | | | | min | 106 | 134 | 220 | 290 | 371 | | | | max | 2.1 | 3.0 | 6.9 | 5.8 | 8.9 | | Pressure drop in cooling [kPa] | (1) | med | 1.6 | 2.2 | 5.7 | 4.3 | 7.9 | | | | min | 1.0 | 1.5 | 4.1 | 2.8 | 4.8 | | | | max | 0.74 | 1.14 | 1.69 | 3.33 | 3.07 | | Heating capacity 2 pipes [kW] | (2) | med | 1.04 | 0.97 | 1.51 | 2.29 | 2.97 | | | | min | 0.81 | 1.13 | 1.69 | 2.15 | 1.89 | | | | max | 128 | 199 | 293 | 630 | 576 | | Water flow in heating 2 pipes [I/h] | (2) | med | 181 | 169 | 263 | 428 | 555 | | 3 | | min | 141 | 197 | 293 | 400 | 334 | | | | max | 1.4 | 3.5 | 7.8 | 12.1 | 11.5 | | ressure drop in heating 2 pipes [kPa] | (2) | med | 2.5 | 2.7 | 6.5 | 6.2 | 10.8 | | | (-) | min | 1.7 | 3.5 | 7.8 | 5.5 | 4.5 | | | | max | 2.44 | 2.67 | 3.61 | 5.22 | 6.23 | | Heating capacity 4 pipes [kW] | (3) | med | 2.05 | 2.24 | 3.08 | 4.37 | 5.34 | | ream & cohocity . Pipes [mm] | (5) | min | 1.5 | 1.83 | 2.56 | 3.52 | 4.34 | | | | max | 246 | 215 | 301 | 454 | 530 | | Water flow in heating 4 pipes [I/h] | (3)
 med | 195 | 182 | 265 | 384 | 459 | | rrace nor an neading 1 pipes (and | (5) | min | 138 | 153 | 220 | 306 | 371 | | | | max | 3.1 | 2.6 | 5.8 | 5.2 | 7.6 | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 2.0 | 1.9 | 4.4 | 3.9 | 5.8 | | ressure drop in riedding ir pipes [ki d] | (3) | min | 1.2 | 1.5 | 3.2 | 2.6 | 4.0 | | | | max | 253 | 317 | 432 | 614 | 737 | | Air flow [m3/h] | | med | 187 | 252 | 351 | 488 | 606 | | air now [mo/n] | | min | 136 | 186 | 278 | 371 | 470 | | | | | 51 | 51 | 54 | 55 | 58 | | Sound power level [dB(A)] | | max | 44 | 45 | 49 | 49 | 53 | | Souria power lever [ab(A)] | | med | | 40 | | | 47 | | | | min | 37 | | 43 | 42 | | | Sound procesure lovel [4D(A)] | (4) | max | 41 | 41 | 45 | 45 | 49 | | Sound pressure level [dB(A)] | (4) | med | 35 | 36 | 40 | 40 | 44 | | Danier annual [V als 11-] | | min | 28 | 31 | 34 | 33 | 37 | | Power supply [V-ph-Hz] | | | 40 | F4 | 230 / 1 / 50 + E | 67 | 77 | | Power input [W] | | max | 46 | 51 | 57 | 67 | 77 | | Absorbed current [A] | | max | 0.22 | 0.23 | 0.25 | 0.29 | 0.33 | | | Height | mm | 430 | 430 | 430 | 430 | 430 | | Dimensions | Width | mm | 648 | 773 | 898 | 1023 | 1148 | | | Depth | mm | 254 | 254 | 254 | 254 | 224 | ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C ⁽⁴⁾ Sound pressure level in a 100 m3 room, at 1.5 m distance and riverberating time of 0.3 s. max = speed 2, med = speed 3, min = speed 5 when using selection software ⁽²⁾ Room temperature 20°C - Water inlet temperature: 45/40°C (3) Room temperature 20°C - Water inlet temperature: 765/55°C. ### Compatibility table / Codes | Model | | | | | | LAS | SER | | | | | LOW BODY | | | | | |--|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|----| | Sizes | | 110 | 112 | 114 | 216 | 218 | 220 | 222 | 224 | 226 | 328 | 110 | 112 | 114 | 216 | 21 | | With Cabinet | | | | | | | | | | | | | | | | | | YLV-YLH | 2/3/4 rows | • | • | • | • | • | • | • | • | • | • | | | | | | | YLV-YLH/AF Front air intake | 2/3/4 rows | • | • | • | • | • | • | • | • | • | • | | | | | | | YLVR | 2/3 rows | | | | | | | | | | | • | • | • | • | • | | Without Cabinet | | | | | | | | | | | | | | | | | | YLIV-YLIH | 2/3/4 rows | • | • | • | • | • | • | • | • | • | • | | | | | | | YLIV-YLIH/AF Front air intake | 2/3/4 rows | • | • | • | • | • | • | • | • | • | • | | | | | | | YLIVR | 2/3 rows | | | | | | | | | | | • | • | • | • | • | | Options (Factory fitted) | | | | | | | | | | | | | | | | | | Coil and heaters | | | | | | | | | | | | | | | | | | 1 row heating | BA1 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | | Kit electrical heater (with relay and safety switch) | KREL | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | Built in thermostat | KKLL | _ | _ | | | | - | - | | - | | | - | _ | | - | | Fan speed selector | CSL00 | | | | | | | | • | | | | | | | | | Thermostat with manual fan speed | | | | | | | | | | | | | | | | | | and S/W change over | CML00 | | | | | | | | • | | | | | | | | | Thermostat with manual fan speed, dead band, automatic change over | CEL00 | | | | | | | | • | | | | | | | | | Thermostat with automatic fan speed, dead band, automatic change over | CEL20 | | | | | | | | • | | | | | | | | | Thermostat with automatic fan speed, dead band, automatic change over for modulating valve | CEL30 | | | | | | | | • | | | | | | | | | Parallel connection | | | | | | | | | | | | | | | | | | For ON/OFF valve one/FCU | CBL20 | | | | | | | | • | | | | | | | | | For modulating valve one/FCU | CBL30 | | | | | | | | • | | | | | | | | | 3 way valve factory fitted | | | | | | | | | | | | | | | | | | For 2 pipe systems ON/OFF | J3A2 (2p) | | | | | | | | • | | | | | | | | | For 4 pipe systems ON/OFF | J3A2 (4p) | | | | | | | | • | | | | | | | | | 3 way modulating valve factory fitted | | | | | | | | | | | | | | | | | | For 2 pipe systems Modulating | J3AM (2p) | | | | | | | | • | | | | | | | | | For 4 pipe systems Modulating | J3AM (4p) | | | | | | | | • | | | | | | | | | Shut off valves factory fitted | | | | | | | | | | | | | | | | | | For 2 pipe systems | DT (2p) | | | | | | | | • | | | | | | | | | For 4 pipe systems | DT (4p) | | | | | | | | • | | | | | | | | | Condensate pump | PC | | | | | | | | • | | | | | | | | | WS sensor change over for CEL/CER | WS | | | | | | | | • | | | | | | | | | Minimum temperature thermostat | TM | | | | | | | | • | | | | | | | | | Accessories (Supplied loose) | | | | | | | | | | | | | | | | | | Remote controllers and thermostat (w | all mounted | 1) | | | | | | | | | | | | | | | | Fan speed selector | CSR00 | | | | | | | | • | | | | | | | | | Thermostat with manual fan speed and S/W change over | CMR00 | | | | | | | | • | | | | | | | | | Thermostat with manual fan speed, dead band, automatic change over | CER00 | | | | | | | | • | | | | | | | | | Thermostat with automatic fan speed, dead band, automatic change over | CER20 | | | | | | | | • | | | | | | | | | Thermostat with automatic fan speed, dead band, automatic change over for modulating valve | CER30 | | | | | | | | • | | | | | | | | | Feet and panel (1) | | | | | | | | | | | | | | | | | | Set of painted feet | CP1 | • | • | • | • | • | • | • | • | • | • | | | | | | | Set of painted feet + frontal socle | ZL1 | • | • | • | • | • | • | • | • | • | • | | | | | | | Vertical painted back panel | PPV1 | • | • | • | • | • | • | • | • | • | • | | | | | | | Horizontal painted back panel | PPH1 | • | • | • | • | • | • | • | • | • | • | | | | | | | Plenums and air intake (1) | | | | | | - | | | | | | | | | | | | Air intake plenum | PA | • | • | • | • | • | • | • | • | • | • | | | | | | | Air intake plenum with collars | PAS | • | • | • | • | • | • | • | • | • | • | | | | | | | 90° air intake plenum | PA90 | • | • | • | • | • | • | • | • | • | • | | | | | | | Air intake duct fitting | RCA | • | • | • | • | • | • | • | • | • | • | | | | | | | Air delivery plenum with collars | PM | • | • | • | • | • | • | • | • | • | • | | | | | | | 90° air delivery plenum | | | | | _ | • | • | | • | | _ | - | | | | | (1) for check compatibility with the models of FCU see compatibility table $\,$ # **Dimensions & Weights** #### YLV & YLH - ▶ V= vertical - ▶ H= horizontal #### YLV-AF & YLH-AF - ► AF= front air intake ► V= vertical ► H= horizontal - YLVR - ▶ R= low body V= vertical | Dim | 110 | 112 | 114 | 216 | 218 | 220 | 222 | 224 | 226 | 328 | |-----|-----|-----|-----|------|------|------|------|------|------|------| | A | 648 | 773 | 898 | 1023 | 1148 | 1273 | 1273 | 1523 | 1523 | 1773 | | В | 374 | 499 | 624 | 749 | 874 | 999 | 999 | 1249 | 1249 | 1499 | | C1 | 224 | 224 | 224 | 224 | 224 | 254 | 254 | 254 | 254 | 254 | | C2 | 233 | 233 | 233 | 233 | 233 | 263 | 263 | 263 | 263 | 263 | | D | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | | Е | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | F | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | | G | 280 | 280 | 280 | 280 | 280 | 356 | 356 | 356 | 356 | 356 | | Н | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | | 1 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | | J | 538 | 538 | 538 | 538 | 538 | 614 | 614 | 614 | 614 | 614 | | N | 266 | 266 | 266 | 266 | 266 | 299 | 299 | 299 | 299 | 299 | | 0 | 113 | 113 | 113 | 113 | 113 | 138 | 138 | 138 | 138 | 138 | | Р | 48 | 48 | 48 | 48 | 48 | 53 | 53 | 53 | 53 | 53 | | Q | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | | R | 355 | 355 | 355 | 355 | 355 | 409 | 409 | 409 | 409 | 409 | | S | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | | Т | 117 | 117 | 117 | 117 | 117 | 135 | 135 | 135 | 135 | 135 | | U | 90 | 90 | 90 | 90 | 90 | 116 | 116 | 116 | 116 | 116 | | ٧ | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | | V 1 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | | W | 195 | 195 | 195 | 195 | 195 | 238 | 238 | 238 | 238 | 238 | | Χ | 219 | 219 | 219 | 219 | 219 | 252 | 252 | 252 | 252 | 252 | | Υ | 205 | 205 | 205 | 205 | 205 | 235 | 235 | 235 | 235 | 235 | | Z | 109 | 109 | 109 | 109 | 109 | 122 | 122 | 122 | 122 | 122 | | Ø | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | | kg1 | 18 | 20 | 23 | 28 | 31 | 41 | 44 | 52 | 52 | 58 | | kg2 | 19 | 21 | 24 | 30 | 32 | 43 | 46 | 54 | 54 | 61 | Notes: 1=YLV / YLH - 2=YLV/AF / YLH/AF (All dimensions in mm) | LOW BODY: YLVR | | |----------------|---------| | A B | G N R X | | Dim | 110 | 112 | 114 | 216 | 218 | |-----|-----|-----|-----|------|------| | Α | 648 | 773 | 898 | 1023 | 1148 | | В | 374 | 499 | 624 | 749 | 874 | | С | 254 | 254 | 254 | 254 | 254 | | D | 174 | 174 | 174 | 174 | 174 | | Е | 100 | 100 | 100 | 100 | 100 | | G | 170 | 170 | 170 | 170 | 170 | | Н | 101 | 101 | 101 | 101 | 101 | | J | 430 | 430 | 430 | 430 | 430 | | N | 245 | 245 | 245 | 245 | 245 | | 0 | 154 | 154 | 154 | 154 | 154 | | Р | 31 | 31 | 31 | 31 | 31 | | Q | 47 | 47 | 47 | 47 | 47 | | R | 304 | 304 | 304 | 304 | 304 | | S | 88 | 88 | 88 | 88 | 88 | | T | 87 | 87 | 87 | 87 | 87 | | U | 65 | 65 | 65 | 65 | 65 | | V | 47 | 47 | 47 | 47 | 47 | | W | 84 | 84 | 84 | 84 | 84 | | Χ | 214 | 214 | 214 | 214 | 214 | | Z | 109 | 109 | 109 | 109 | 109 | | Ø | 20 | 20 | 20 | 20 | 20 | | kg | 15 | 17 | 22 | 23 | 26 | (All dimensions in mm) ## **Dimensions & Weights** #### YLIV & YLIH - ▶ V= vertical ▶ H= horizontal - ▶ I= without cabinet #### YLIV-AF & YLIH-AF YLIVR - ▶ AF= front air intake - V= vertical H= horizontal - ▶ I= without - ▶ R= low body - ▶ V= vertical ▶ I= without cabinet | LASER: YLIH - YLIH/AF | | |-----------------------|------------------| | At B M | VLIHUAF OR R W N | | Dim | 110 | 112 | 114 | 216 | 218 | 220 | 222 | 224 | 226 | 328 | |-----|-----|-----|-----|-----|------|------|------|------|------|------| | А | 555 | 680 | 805 | 930 | 1055 | 1180 | 1180 | 1430 | 1430 | 1680 | | A 1 | 574 | 699 | 824 | 949 | 1074 | 1199 | 1199 | 1449 | 1449 | 1699 | | В | 374 | 499 | 624
 749 | 874 | 999 | 999 | 1249 | 1249 | 1499 | | С | 215 | 215 | 215 | 215 | 215 | 245 | 245 | 245 | 245 | 245 | | D | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | | D 1 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | 128 | | Е | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | | F | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | | G | 280 | 280 | 280 | 280 | 280 | 356 | 356 | 356 | 356 | 356 | | Н | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | | 1 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | | J | 505 | 505 | 505 | 505 | 505 | 581 | 581 | 581 | 581 | 581 | | K | 110 | 110 | 110 | 110 | 110 | 125 | 125 | 125 | 125 | 125 | | L | 55 | 55 | 55 | 55 | 55 | 60 | 60 | 60 | 60 | 60 | | М | 349 | 474 | 599 | 724 | 849 | 974 | 974 | 1224 | 1224 | 1474 | | N | 266 | 266 | 266 | 266 | 266 | 299 | 299 | 299 | 299 | 299 | | 0 | 113 | 113 | 113 | 113 | 113 | 138 | 138 | 138 | 138 | 138 | | Р | 48 | 48 | 48 | 48 | 48 | 53 | 53 | 53 | 53 | 53 | | Q | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 87 | | R | 355 | 355 | 355 | 355 | 355 | 409 | 409 | 409 | 409 | 409 | | S | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | | Т | 117 | 117 | 117 | 117 | 117 | 135 | 135 | 135 | 135 | 135 | | U | 90 | 90 | 90 | 90 | 90 | 116 | 116 | 116 | 116 | 116 | | V | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | | V 1 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | | W | 195 | 195 | 195 | 195 | 195 | 238 | 238 | 238 | 238 | 238 | | Χ | 219 | 219 | 219 | 219 | 219 | 252 | 252 | 252 | 252 | 252 | | Υ | 200 | 200 | 200 | 200 | 200 | 230 | 230 | 230 | 230 | 230 | | Z | 109 | 109 | 109 | 109 | 109 | 122 | 122 | 122 | 122 | 122 | | Ø | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | | kg | 10 | 13 | 16 | 19 | 22 | 29 | 31 | 38 | 38 | 42 | (All dimensions in mm) | LOW BODY: YLIVR | | |-----------------|-----------| | D B V L VILVE | G J N R X | | Dim | 110 | 112 | 114 | 216 | 218 | |-----|-----|-----|-----|-----|------| | Α | 555 | 680 | 805 | 930 | 1055 | | В | 374 | 499 | 624 | 749 | 874 | | С | 230 | 230 | 230 | 230 | 230 | | D | 108 | 108 | 108 | 108 | 108 | | E | 73 | 73 | 73 | 73 | 73 | | G | 170 | 170 | 170 | 170 | 170 | | Н | 101 | 101 | 101 | 101 | 101 | | J | 395 | 395 | 395 | 395 | 395 | | K | 61 | 61 | 61 | 61 | 61 | | L | 349 | 474 | 599 | 724 | 849 | | M | 127 | 127 | 127 | 127 | 127 | | N | 245 | 245 | 245 | 245 | 245 | | 0 | 154 | 154 | 154 | 154 | 154 | | Р | 31 | 31 | 31 | 31 | 31 | | Q | 47 | 47 | 47 | 47 | 47 | | R | 304 | 304 | 304 | 304 | 304 | | S | 88 | 88 | 88 | 88 | 88 | | T | 87 | 87 | 87 | 87 | 87 | | U | 65 | 65 | 65 | 65 | 65 | | V | 47 | 47 | 47 | 47 | 47 | | W | 84 | 84 | 84 | 84 | 84 | | Χ | 214 | 214 | 214 | 214 | 214 | | Υ | 201 | 201 | 201 | 201 | 201 | | Z | 109 | 109 | 109 | 109 | 109 | | Ø | 20 | 20 | 20 | 20 | 20 | | kg | 9 | 11 | 14 | 16 | 19 | (All dimensions in mm) ### Compatibility tables CSL00 (Built in) CSR00 (Wall mounted) Fan speed selector CML00 (Built in) CMR00 (Wall mounted) Thermostat with manual fan speed and S/W change over #### CEL00 (Built in) CER00 (Wall mounted) Thermostat with manual fan speed and automatic change over #### CEL20 (Built in) CER20 (Wall mounted) Thermostat with auto. fan speed and automatic change over #### CEL30 (Built in) CER30 (Wall mounted) Thermostat with auto. fan speed and automatic change over for modulating valve #### Features CEL/CER - Dead band for change over 5°C or 2°C (factory set 2°C) - · Manual fan speeds or automatic (models 20 and 30) - · Thermostated fan control or continuous fan running - Option water sensor WS for change over on coil (for 2 pipes) - · Led indicated status summer, winter or dead band - Temperature setting for 7 to 30°C (comfort 20-25°C) - · Plastic pins for limiting temperature range - Input for window contact - · Input for Economy/ occupancy mode - Output for remote alarm - Filter alarm 600 or 1200 running hours (factory set 1200 hours) - With electrical heater post ventilation - With Air sensor in the air intake destratification function (CEL only) ### Compatibility table Thermostats / Valves / Heaters / Parallel connection / Water sensor / Minimum temperature thermostat | | | Valore 6 | 2! | Valore 6 | 4 | | Parallel | connection | Water | Min. Temp. | |--------|--|-----------|------------|--------------------|-----------|---------|----------|------------|--------|------------| | Factor | y fitted thermostat (built in) | vaives to | or 2 pipes | Valves for 4 pipes | | Heaters | ON/OFF | Modulating | sensor | Thermostat | | | | J3A2 (2p) | J3AM (2p) | J3A2 (4p) | J3AM (4p) | KREL | CBL20 | CBL30 | WS | TM | | CSL00 | Fan speed selector | | | | | | • | | | • | | CML00 | Thermostat with manual fan speed and S/W change over | • | | • | | | • | | | • | | CEL00 | Thermostat with manual fan speed, dead band, automatic change over | • | | • | | • | • | | • | • | | CEL20 | Thermostat with automatic fan speed, dead band, automatic change over | • | | • | | • | • | | • | • | | CEL30 | L30 Thermostat with automatic fan speed, dead band, automatic change over for modulating valve | | • | | • | | | • | • | • | | Remot | e controllers and thermostats (wall mounted) | | | | | | | | | | | CSR00 | Fan speed selector | | | | | | • | | | • | | CMR00 | Thermostat with manual fan speed and S/W change over | • | | • | | | • | | | • | | CER00 | Thermostat with manual fan speed, dead band, automatic change over | • | | • | | • | • | | • | • | | CER20 | Thermostat with automatic fan speed, dead band, automatic change over | • | | • | | • | • | | • | • | | CER30 | Thermostat with automatic fan speed, dead band, automatic change over for modulating valve | | • | | • | | | • | • | • | Compatible Not compatible ### Compatibility tables ### Compatibility Options / Accessories / Models | | | | IOW | BODY | | | | | | | | |---------------------|--|------------------------------------|-----|------------------------------|---------------|---------------|--------------|---------|---------|------|------| | | | | LA | ASER | | | CONG | CEALED | | LOW | ворт | | Code | Designation | YLV | YLH | YLV-AF | YLH-AF | YLIV | YLIH | YLIV-AF | YLIH-AF | YLVR | YLIV | | Coils a | and heaters** | | | | | | | | | | | | BA1** | Additional 1 row heating | • | • | • | • | • | • | • | • | • | • | | KREL** | Kit electrical heater with safety thermostat and relay | • | • | • | • | • | • | • | • | | | | _ | | | | | | | | | | | | | | ry fitted thermostat (built in) | | | | | | 1 | | | | | | CSL00 | Fan speed selector (buit in) | • | | • | | • | | • | | • | • | | CML00 | Thermostat with manual fan speed
and S/W change over | • | | • | | • | | • | | • | • | | CEL00 | Thermostat with manual fan speed, dead band, automatic change over | | | Cor | npatible with | electrical he | aters | | | • | • | | CEL20 | Thermostat with automatic fan speed, dead band, automatic change over | | ı | Cor | npatible with | electrical he | aters | | | • | • | | CEL30 | Thermostat with automatic fan speed, dead band, automatic change over for modulating valves | • | | • | | • | | • | | • | • | | CBL20 | Parallel connection for ON/OFF valve | • | • | • | • | • | • | • | • | • | • | | CBL30 | Parallel connection for modulating valve | • | • | • | • | • | • | • | • | • | • | | Remot | te controllers and thermostats (wall mounte | d) | | | | | | | | | | | CSR00 | , , , | • | • | • | • | • | • | • | • | • | • | | CMR00 | Thermostat with manual fan speed and S/W change over | • | • | • | • | • | • | • | • | • | • | | CER00 | Thermostat with manual fan speed, dead band, automatic change over | | • | • | | | | | | | | | CER20 | Thermostat with automatic fan speed, dead band, automatic change over | Compatible with electrical heaters | | | | | | | | | • | | CER30 | Thermostat with automatic fan speed, dead band, automatic change over for modulating valves | • | • | • | • | • | • | • | • | • | • | | \/- | I Complement and I NAI-bear and I NAI-bear | | | ·························/// | | | | | | | | | | s / Condensate pump / Water sensor / Minim | | | | · · | _ | | | | | | | | 3-way 4-ports on/off valves for 2-pipe systems | • | • | • | • | • | • | • | • | • | • | | | 3-way 4-ports on/off valves for 4-pipe systems | • | • | • | • | • | • | • | • | • | • | | | a) 3-way 4-ports modulating valves for 2-pipe systems | • | • | • | • | • | • | • | • | • | • | | J3AW (4)
DT (2p) | s) 3-way 4-ports modulating valves for 4-pipe systems Shut-off valves for 2-pipe systems (in addition to J3A2/J3AM valves) | • | • | • | • | • | • | • | • | • | | | DT (4p) | Shut-off valves for 4-pipe systems | • | • | • | • | • | • | • | • | • | • | | | (in addition to J3A2/J3AM valves) | | | | | | | | · | | | | PC | Condensate pump | • | • | • | • | • | • | • | • | • | • | | WS | Water sensor | | | _ | | | with CEL/CEF | | | | | | TM | Minimum temperature thermostat | • | • | • | • | • | • | • | • | • | • | | Feet a | nd panels | | | | | | | | | | | | CP1 | Set of painted feet | • | | | | • | | | | | | | ZL1 | Set of feet + frontal socle | • | | | | | | | | | | | PPV1 | Vertical painted back panel | • | | • | | | | | | • | | | PPH1 | Horizontal painted back panel | | • | | • | | | | | | | | Extern | nal air intake | | | 1 | | | | | | | | | PA | Air intake plenum | | | | | | • | | | | | | PAS | Air intake plenum collars | | | | | | • | | | | | | PA90 | 90° air intake plenum | | | | | | • | | | | | | RCA | Air intake duct fitting | | | | | | • | | | | | | PM | Air delivery plenum with collars | | | | | • | • | • | • | | • | | PM90 | 90° air delivery plenum | | | | | • | • | • | • | | • | Compatible Compatible with conditions Not compatible Maximum of rows is indicated in the documentation, the maximum number of rows includes the heating row or electrical heater. ### LASER ECM and LOW
BODY ECM 0.6 to 9.2 kW ### **Technical features** | Model | | | | LASER ECM | | | | | | | | LOW BODY ECM | | | | |--|--------|------|------|-----------|------|------|------|----------|------|------|------|--------------|--|--|--| | Sizes | | (*) | 512 | 514 | 516 | 520 | 522 | 524 | 528 | 512 | 514 | 516 | | | | | | | maxv | 1.98 | 2.56 | 3.81 | 5.05 | 5.81 | 7.47 | 9.18 | 1.47 | 1.98 | 3.17 | | | | | Total cooling capacity [kW] | (1) | medv | 1.43 | 1.81 | 2.53 | 3.86 | 4.42 | 5.64 | 6.94 | 1.07 | 1.39 | 2.40 | | | | | | | minv | 0.74 | 0.93 | 1.51 | 2.72 | 3.05 | 4.07 | 4.89 | 0.57 | 0.68 | 1.68 | | | | | | | max | 1.65 | 2.12 | 3.14 | 3.79 | 4.32 | 6.09 | 7.51 | 1.36 | 1.75 | 2.24 | | | | | Sensible cooling capacity [kW] | (1) | med | 1.16 | 1.48 | 2.01 | 2.78 | 3.16 | 4.42 | 5.50 | 0.97 | 1.19 | 1.72 | | | | | | | min | 0.54 | 0.78 | 1.21 | 1.92 | 2.11 | 3.13 | 3.74 | 0.49 | 0.57 | 1.26 | | | | | | | max | 341 | 440 | 655 | 869 | 999 | 1285 | 1579 | 252 | 340 | 543 | | | | | Water flow in cooling [I/h] | (1) | med | 246 | 311 | 435 | 664 | 760 | 970 | 1194 | 184 | 238 | 374 | | | | | | | min | 127 | 160 | 260 | 468 | 525 | 700 | 841 | 98 | 117 | 288 | | | | | | | max | 9.6 | 6.5 | 14.6 | 16.9 | 36.2 | 16.8 | 31.3 | 5.3 | 8.7 | 8.4 | | | | | Pressure drop in cooling [kPa] | (1) | med | 5.4 | 3.4 | 8.5 | 10.6 | 22.0 | 10.0 | 18.5 | 3.5 | 4.6 | 4.3 | | | | | | | min | 1.7 | 1.1 | 3.9 | 5.6 | 11.1 | 5.5 | 9.7 | 1.8 | 1.3 | 2.7 | | | | | | | max | 2.05 | 3.04 | 4.40 | 5.76 | 6.53 | 8.43 | 10.4 | 1.71 | 2.42 | 3.63 | | | | | Heating capacity 2 pipes [kW] | (2) | med | 1.47 | 2.18 | 3.05 | 4.40 | 4.84 | 6.22 | 7.67 | 1.36 | 1.73 | 2.74 | | | | | | | min | 0.78 | 1.15 | 1.87 | 3.11 | 3.37 | 4.50 | 5.38 | 0.75 | 0.91 | 1.95 | | | | | | | max | 394 | 523 | 757 | 991 | 1123 | 1450 | 1789 | 302 | 381 | 632 | | | | | Water flow in heating 2 pipes [I/h] | (2) | med | 282 | 375 | 525 | 757 | 832 | 1070 | 1319 | 222 | 265 | 477 | | | | | Fa - d | | min | 150 | 198 | 322 | 535 | 580 | 774 | 925 | 123 | 135 | 340 | | | | | | | max | 10.8 | 7.3 | 17.3 | 21.8 | 40.0 | 17.2 | 32.2 | 1.87 | 2.42 | 3.63 | | | | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 6.0 | 3.9 | 8.6 | 13.0 | 23.5 | 9.8 | 18.0 | 1.36 | 1.73 | 2.74 | | | | | | | min | 2.0 | 1.4 | 4.2 | 6.6 | 11.5 | 5.3 | 9.0 | 0.75 | 0.91 | 1.95 | | | | | | | max | 1.84 | 2.39 | 3.20 | 5.00 | 5.55 | 6.46 | 7.90 | 3.33 | 4.36 | 6.53 | | | | | Heating capacity 4 pipes [kW] | (3) | med | 1.37 | 1.76 | 2.40 | 4.12 | 4.35 | 5.74 | 6.30 | 2.45 | 3.09 | 4.91 | | | | | | | min | 0.87 | 1.09 | 1.77 | 3.22 | 3.29 | 4.09 | 4.94 | 1.35 | 1.64 | 3.51 | | | | | | | max | 158 | 206 | 275 | 430 | 477 | 614 | 679 | 270 | 345 | 572 | | | | | Water flow in heating 4 pipes [I/h] | (3) | med | 118 | 151 | 206 | 354 | 374 | 494 | 542 | 201 | 238 | 430 | | | | | [l/H] | | min | 75 | 94 | 152 | 277 | 283 | 389 | 425 | 111 | 123 | 308 | | | | | | | max | 4.7 | 9.3 | 15.6 | 16.8 | 21.5 | 36.0 | 46.2 | 5.1 | 7.4 | 8.2 | | | | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 2.8 | 5.4 | 11.0 | 11.5 | 14.0 | 24.2 | 30.7 | 3.5 | 3.8 | 4.8 | | | | | [kra] | | min | 1.2 | 2.4 | 5.6 | 7.1 | 7.7 | 15.4 | 19.5 | 2.0 | 1.1 | 2.6 | | | | | | | max | 456 | 575 | 793 | 1083 | 1306 | 1566 | 2040 | 386 | 494 | 681 | | | | | Air flow [m3/h] | | med | 298 | 375 | 488 | 755 | 902 | 1079 | 1351 | 255 | 321 | 467 | | | | | | | min | 137 | 173 | 287 | 503 | 569 | 715 | 875 | 116 | 142 | 203 | | | | | | | max | 55 | 59 | 60 | 57 | 62 | 63 | 69 | 57 | 60 | 58 | | | | | Sound power level [dB(A)] | | med | 44 | 48 | 47 | 48 | 51 | 53 | 59 | 46 | 50 | 49 | | | | | | | min | 29 | 29 | 33 | 37 | 39 | 43 | 48 | 30 | 34 | 38 | | | | | | | max | 46 | 50 | 51 | 48 | 53 | 54 | 60 | 47 | 50 | 49 | | | | | Sound pressure level [dB(A)] | (4) | med | 35 | 39 | 38 | 39 | 42 | 44 | 50 | 36 | 40 | 37 | | | | | | | min | 21 | 21 | 24 | 28 | 30 | 34 | 39 | 20 | 24 | 28 | | | | | Power supply [V-ph-Hz] | | | | | | | | / 50 + E | | | | | | | | | Power input [W] | | max | 31 | 47 | 42 | 46 | 76 | 89 | 168 | 34 | 46 | 35 | | | | | | Height | mm | 623 | 623 | 623 | 699 | 699 | 699 | 699 | 395 | 395 | 395 | | | | | | | | | | | | | | | | | | | | | | Dimensions | Width | mm | 773 | 898 | 1023 | 1273 | 1273 | 1523 | 1773 | 680 | 805 | 930 | | | | ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C Manufacturer reserves the rights to change specifications without prior notice. ⁽²⁾ Room temperature 20°C - Water inlet temperature: 45/40°C (3) Room temperature 20°C - Water inlet temperature: 65/55°C. ⁽⁴⁾ Sound pressure level in a 100 m³ room, at 1.5 m distance and riverberating time of 0.3 s. (*) 512 - 514 (3v-6v-9v) (*) 516 (2v-5v-10v) (*) 520 - 522 - 524 - 528 (3v-6v-10v) ### LASER ECM and LOW BODY ECM ### Compatibility tables ### Compatibility Options / Accessories / Models | | | | 1014 00 | DV 5614 | | | | | | | | |-----------------|---|------------|----------|--------------|------------|--------------|-------------|---------------|---------|--------|--------| | | | | LASE | R-ECM | | | CONCEA | LED-ECM | | rom BC | DY-ECM | | Code | Designation | YLV | YLH | YLV-AF | YLH-AF | YLIV | YLIH | YLIV-AF | YLIH-AF | YLVR | YLIVR | | Coils and heat | ters** | | | | | | | | | | | | | Additional 1 row heating | • | • | • | • | • | • | • | • | • | • | | | Kit electrical heater with safety thermostat and relay | • | • | • | • | • | • | • | • | | | | F | | | | | | | | | | | | | | thermostat (built in) | | | T - | | _ | | | | _ | _ | | | Microprocessor control for ECM units | • | | • | | • | | • | | • | • | | | Omnibus control for ECM units + Analogue Plus console | • | | • | | • | | • | | • | • | | OBV11-ODC211 | Omnibus control for ECM units + Display console | • | | • | | • | | • | | • | • | | Remote contro | rollers and thermostats (wall mounted) | | | | | | | | - | | | | | Microprocessor control for ECM units, for wall installation | • | • | • | • | • | • | • | • | • | • | | OBV10+ODC716 | Omnibus control for ECM units + Remote Analogue Plus console | • | • | • | • | • | • | • | • | • | • | | OBV10+ODC216 | Omnibus control for ECM units + Remote Display console | • | • | • | • | • | • | • | • | • | • | | Valves / Conde | ensate pump / Water sensor / Minimum tempe | erature th | ermostat | (Factory fit | ted) | | | | | | | | J3A2 (2p) | 3-way 4-ports on/off valves for 2-pipe systems | • | • | • | • | • | • | • | • | • | • | | J3A2 (4p) | 3-way 4-ports on/off valves for 4-pipe systems | • | • | • | • | • | • | • | • | • | • | | J3AM (2p) | 3-way 4-ports modulating valves for 2-pipe systems | • | • | • | • | • | • | • | • | • | • | | | 3-way 4-ports modulating valves for 4-pipe systems | • | • | • | • | • | • | • | • | • | • | | DT (2x) | Shut-off valves for 2-pipe systems
(in addition to J3A2/J3AM valves) | • | • | • | • | • | • | • | • | • | • | | DT (4p) | Shut-off valves for 4-pipe systems
(in addition to J3A2/J3AM valves) | • | • | • | • | • | • | • | • | • | • | | PC | Condensate pump | • | • | • | • | • | • | • | • | • | • | | | Water sensor | | | | Compatible | with all the | above liste | d controllers | | | | | | | | | | | | | | | | | | Feet and pane | | _ | | | | _ | | | | | | | | Set of painted feet | • | | | | • | | | | | | | | Set of feet + frontal socle | • | | | | | | | | | | | | Vertical painted back panel | • | | • | | | | | | • | | | PPH1 | Horizontal painted back panel | | • | | • | | | | | | | | External air in | itake | | | | | | | | | | | | PA . | Air intake plenum | | | | | | • | | | | | | PAS . | Air intake plenum collars | | | | | | • | | | | | | PA90 | 90° air intake plenum | | | | | | • | | | | | | RCA | Air intake duct fitting | | | | | | • | | | | | | | Air delivery plenum with collars | | | | | • | • | • | • | | • | | | 90° air delivery plenum | | | | | • | • | • | • | | • | CompatibleCompatible with conditions ^{**} Maximum of rows is indicated in the documentation, the maximum number of rows includes the heating row or electrical heater. ### YEFB Hydro Blower 2 & 4 pipe system A complete range from 4.3 kW up to 28.9 kW **CSR00 (Wall mounted)** Fan speed selector **CMR00 (Wall mounted)** Thermostat with manual fan speed and S/W change over ## **CER00 (Wall mounted)**Thermostat with manual fan speed and automatic change ## **CER20 (Wall mounted)**Thermostat with auto. fan speed and automatic change # **CER30 (Wall mounted)**Thermostat with auto. fan speed and automatic change over for modulating valve **TUC03+ Terminal unit controller**BacNET and N2 Metasys network compatible YEFB Blower units are available in 6 sizes for horizontal concealed installations: thanks to their high ESP fans that can handle up to 250Pa, they are the ideal solution for air conditioning large spaces. Selection software ### **Features** - · 6 unit sizes for horizontal mounting - · Handles high external static pressure up to 250Pa - · Choice of 2 or 4 pipe systems - · Twin centrifugal fans - · Horizontal air return - · Air distribution plenum - · Electric heater option - Optional paint finish - F5 grade filter option - 5 Row cooling coil option on sizes 060, 070 ### YEFB Hydro Blower 4.3 to 28.9 kW ### Unit performance at different Pa external static pressure, with 4 row cooling coil | Model YEFB | | | 020-4 | 030-4 | 040-4 | 050-4 | 060-4 | 070-4 | |---|------------------|-----|-------|-------|---------|---------|---------|---------| | | | max | 6.95 | 9.49 | 11.77 | 13.72 | 23.83 | 28.99 | | Total cooling capacity [kW] | (1) | med | 5.90 | 8.23 | 10.35 | 12.6 | 21.59 | 26.64 | | | | min | 4.30 | 7.11 | 8.91 | 11.36 | 17.15 | 24.28 | | | | max | 4.99 | 7.91 | 9.94 | 11.80 | 18.89 | 23.75 | | Sensible cooling capacity [kW] | (1) | med | 4.14 | 6.7 | 8.61 | 10.60 | 16.84 | 21.50 | | | | min | 2.98 | 5.68 | 7.17 | 9.44 | 12.93 | 19.14 | | | | max | 1195 | 1632 |
2024 | 2360 | 4099 | 4974 | | Water flow in cooling [I/h] | (1) | med | 1015 | 1416 | 1780 | 2167 | 3714 | 4571 | | | | min | 740 | 1223 | 1533 | 1954 | 2950 | 4167 | | | | max | 17.4 | 31.5 | 30.6 | 40.4 | 28.0 | 39.2 | | Pressure drop in cooling [kPa] | (1) | med | 12.2 | 24.1 | 23.3 | 33.8 | 23.2 | 33.1 | | 0 t 1 | , | min | 6.5 | 18.4 | 17.9 | 28.3 | 15.1 | 28.2 | | | | max | 7.08 | 11.40 | 14.32 | 17.4 | 28.08 | 35.01 | | Heating capacity 2 pipes [kW] | (2) | med | 6.20 | 9.62 | 12.19 | 15.53 | 24.95 | 32.16 | | | \ - / | min | 4.55 | 8.20 | 12.5 | 13.85 | 18.9 | 28.84 | | | | max | 7.08 | 11.40 | 14.32 | 17.40 | 28.08 | 5555 | | Water flow in heating 2 pipes [I/h] | (2) | med | 6.2 | 9.62 | 12.19 | 15.53 | 24.95 | 4926 | | water now in neating 2 pipes [i/ii] | (2) | min | 4.55 | 8.2 | 10.39 | 13.85 | 18.90 | 4330 | | | | max | 13.3 | 34.0 | 36.1 | 51.0 | 30.2 | 47.2 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 10.3 | 25.7 | 26.9 | 41.3 | 23.5 | 40.3 | | | (2) | min | 4.8 | 19.2 | 20.0 | 33.4 | 14.6 | 32.8 | | | | | 13.03 | 12.57 | 16.32 | 24.46 | 30.79 | 62.60 | | Heating capacity 2 pipes [kW] | (3) | max | 11.02 | 16.11 | 21.14 | 28.63 | 43.10 | 57.51 | | | (3) | med | 8.07 | 13.76 | 18.10 | 25.50 | 31.71 | 51.62 | | | | min | | | | | | | | Water flow in heating 2 nines [1/h] | (2) | max | 973 | 1382 | 1761 | 2165 | 3699 | 4999 | | Water flow in heating 2 pipes [I/h] | (3) | med | 1151 | 1076 | 1326 | 1864 | 2815 | 4576 | | | | min | 704 | 1178 | 1470 | 1943 | 2899 | 4150 | | Decrees done in brooking 2 since [UD-] | (2) | max | 14.9 | 12.7 | 11.2 | 25.4 | 11.7 | 36.9 | | Pressure drop in heating 2 pipes [kPa] | (3) | med | 10.3 | 20.2 | 22.4 | 34.2 | 19.3 | 31.4 | | | | min | 5.2 | 15,0 | 13.6 | 27.4 | 12.3 | 25.7 | | A: 0 [2/l] | | max | 1145 | 1910 | 2680 | 3250 | 4120 | 5493 | | Air flow [m3/h] | | med | 920 | 1520 | 2130 | 2870 | 3610 | 4926 | | | | min | 620 | 1205 | 1655 | 2470 | 2580 | 4330 | | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | max | 64.0 | 65.0 | 69.0 | 72.0 | 77.0 | 79.0 | | Sound power level [dB(A)] | | med | 58.0 | 61.0 | 63.0 | 68.0 | 74.0 | 76.9 | | | | min | 48.0 | 57.0 | 57.0 | 65.0 | 65.1 | 74.4 | | | (.) | max | 53.0 | 54.0 | 58.0 | 61.0 | 66.0 | 67.0 | | Sound pressure level [dB(A)] | (4) | med | 47.0 | 50.0 | 52.0 | 57.0 | 63.0 | 65.0 | | | | min | 37.0 | 46.0 | 46.0 | 54.0 | 54.0 | 63.0 | | Power supply [V-ph-Hz] | | | | | | 1 / 50 | | | | Power input [W] | | max | 171 | 352 | 451 | 588 | 1007 | 1 767 | | Absorbed current [A] | | max | 0.74 | 1.62 | 2.05 | 2.83 | 4.47 | 8.08 | | | Height | mm | 407.6 | 407.6 | 407.6 | 407.6 | 517.6 | 517.6 | | Dimensions | Width | mm | 902 | 902 | 902 | 902 | 1 160 | 1 160 | | | Depth | mm | 989.6 | 989.6 | 1 239.6 | 1 239.6 | 1 634.6 | 1 634.6 | ⁴ pipe system not available with 4R heating coil Manufacturer reserves the rights to change specifications without prior notice. ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C (2) Room temperature 20°C - Water inlet temperature: 50°C (3) Room temperature 20°C - Water inlet temperature: 70/60°C (4) Sound pressure level in a 100 m³ room, at 1 m distance and riverberating time of 0.3 s. ## YEFB Hydro Blower ### Compatibility tables ### Compatibility Options / Accessories / Models | | | YEFB | | | | | | | | |---------------|---|------------------------------------|-----|------------------------------------|--------------|-----|-----|--|--| | Code | Designation | 020 | 030 | 040 | 050 | 060 | 070 | | | | Coils and he | aters** | | | | | | | | | | BA2** | Additional 2 row heating | • | • | • | • | • | • | | | | BA3** | Additional 3 row heating | • | • | • | • | • | • | | | | KREL** | Kit electrical heater with safety thermostat and relay | • | • | • | • | • | • | | | | Factory fitte | d electric box | | | | | | | | | | CBL10 | Transformer 230/24V | • | • | • | • | • | • | | | | CBL20 | Parallel connection for ON/OFF valve | • | • | • | • | • | • | | | | CBL30 | Parallel connection for modulating valve | • | • | • | • | • | • | | | | Remote con | trollers and thermostats (wall mounted) | | | | | | | | | | CSR00 | Fan speed selector (wall mounted) | • | • | • | • | • | • | | | | CMR00 | Thermostat with manual fan speed and S/W change over | • | • | • | • | • | • | | | | CEROO | Thermostat with manual fan speed, dead band, automatic change over | Compatible with electrical heaters | | | | | | | | | CER20 | Thermostat with automatic fan speed, dead band, automatic change over | | Сс | Compatible with electrical heaters | | | | | | | CER30 | Thermostat with automatic fan speed, dead band, automatic change over for modulating valves | • | • | • | • | • | • | | | | OPT10+OC716 | Omnibus control for YEFB units + Remote Analogue Plus | • | • | • | • | • | • | | | | OPT10+OC216 | Omnibus control for YEFB units + Remote Display console | • | • | • | • | • | • | | | | Valves (Supr | blied loose) / Condensate pump / Water sensor (Factory fitted) | | | | | | | | | | J3B2 (2p) | 3-way 4-ports on/off valves for 2-pipe systems | • | • | • | • | | | | | | J3B2 (4p) | 3-way 4-ports on/off valves for 4-pipe systems | • | • | • | • | | | | | | J3C2 (2p) | 3-way 4-ports on/off valves for 2-pipe systems | | | | | • | • | | | | J3C2 (4p) | 3-way 4-ports on/off valves for 4-pipe systems | | | | | • | • | | | | J3BM (2p) | 3-way 4-ports modulating valves for 2-pipe systems | • | • | • | • | | | | | | J3BM (4p) | 3-way 4-ports modulating valves for 4-pipe systems | • | • | • | • | | | | | | J3CM (2p) | 3-way 4-ports modulating valves for 2-pipe systems | | | | | • | • | | | | J3CM (4p) | 3-way 4-ports modulating valves for 4-pipe systems | | | | | • | • | | | | DT (2p) | Shut-off valves for 2-pipe systems supplied loose in addition to J3B2 and J3BM valves (in addition to J3A2/J3AM valves) | • | • | • | • | • | • | | | | DT (4p) | Shut-off valves for 4-pipe systems (in addition to J3A2/J3AM valves) | • | • | • | • | • | • | | | | PC | Condensate pump | • | • | • | • | • | • | | | | WS | Water sensor | | | Compatible | with CEL/CER | | | | | | External air | intake | | | | | | | | | | PAS | Air intake plenum collars | • | • | • | • | • | • | | | | PM | Air delivery plenum with collars | • | • | • | • | • | • | | | | PM + Grill | Air delivery plenum painted with air outlet grill | • | • | • | • | • | • | | | Compatible Compatible with conditions Not compatible ** Maximum of rows is indicated in the documentation, the maximum number of rows includes the heating row or electrical heater. # Dimensions & Weights | Model YEFB | | 020-4 | 030-4 | 040-4 | 050-4 | 060-4 | 070-4 | |----------------------|-----|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------------| | А | min | 407.6 | 407.6 | 407.6 | 407.6 | 517.6 | 517.6 | | В | mm | 902 | 902 | 902 | 902 | 1160 | 1160 | | С | mm | 989.6 | 989.6 | 1239.6 | 1239.6 | 1634.6 | 1634.6 | | D | min | 365.6 | 365.6 | 365.6 | 365.6 | 475.6 | 475.6 | | E | mm | 926.6 | 926.6 | 1176.6 | 1176.6 | 1571.6 | 1571.6 | | F | min | 634 | 634 | 634 | 634 | 892 | 892 | | G | mm | 418.5 | 418.5 | 418.5 | 418.5 | 446.5 | 446.5 | | Н | mm | 1019.6 | 1019.6 | 1269.6 | 1269.6 | 1664.6 | 1664.6 | | Weight (3R - 3 rows) | kg | 64.3 | 64.3 | 79.3 | 79.3 | 126.0 | 126.0 | | | | (2-3-4 rows) | (2-3-4 rows) | (2-3-4 rows) | (2-3-4 rows) | (2-3-4-5 rows) | (2-3-4-5 rows) | | Weight of the coil | kg | 1.2 - 2.0 - 2.6 | 1.2 - 2.0 - 2.6 | 1.9 - 2.9 - 3.7 | 1.9 - 2.9 - 3.7 | 3.4 - 4.6 - 6.3 - 9.0 | 3.4 - 4.6 - 6.3 - 9.0 | | Water connection | | G1/2" F | G1/2" F | G1/2" F | G1/2" F | G1" M | G1" M | | | | (2-3-4 rows) | (2-3-4 rows) | (2-3-4 rows) | (2-3-4 rows) | (2-3-4-5 rows) | (2-3-4-5 rows) | | | | , , | ` ' | , , | ` ' | , , | , , | | Water content | - 1 | 1.4 - 2.2 - 2.9 | 1.4 - 2.2 - 2.9 | 1.9 - 2.8 - 3.8 | 1.9 - 2.8 - 3.8 | 3.4 - 5.0 - 6.7 - 8.4 | 3.4 - 5.0 - 6.7 - 8.4 | ## YHP-O High Static Pressure Blower YHP-O 130-430 · 2 & 4 pipe system A complete range from 3 kW to 12 kW #### Wired controls JWC-3V Remote three speeds controller JWC-T JWC-3V + Electronic thermostat and Summer/Winter switch JWC-AU Automatic JWC-T JTM-B Digital Automatic Remote controller TMO 503 SV2 Digital Automatic Remote controller to be mounted in the standard light wall hox Infrared control **TUC03+ Terminal unit controller** BacNET and N2 Metasys network compatible The YHP-O blower units includes 4 airflow range (from 595 up to 2200 m3/h), each built-in 3 or 4 row coils and with the possibility to add an additional 1 or 2 row coil for 4 pipe system. A complete range, perfect to satisfy all air conditioning needs in working environments such as offices, shops, restaurants and hotel rooms, for duct installations with available static pressure up to 80 Pa. #### **Features** - 12 models - · From 3020 to 12500 w cooling - · Horizontal or vertical version - Low noise operation - 5 speed fan - · A wide range of thermostats and accessories - Available with left or right connections Optionally the main valve, auxiliary valve (4 tubes), controller and wiring can be assembled from factory, for an easy installation in a centralized management system. Selection software ### YHP-O High Static Pressure Blower 3 to 12 kW ### Technical features 2 pipe system | Model | | | YHP-O 130 | YHP-O 140 | YHP-O 230 | YHP-O 240 | YHP-O 330 | YHP-O 340 | YHP-O 430 | YHP-O 440 | | | |-----------------------|------------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--| | Cooling capacity * | | kW | 2.94 | 3.42 | 4.87 | 5.69 | 6.50 | 7.22 | 10.33 | 11.80 | | | | Sensible cooling cap | acity * | kW | 2.27 | 2.58 | 3.91 | 4.29 | 5.30 | 5.61 | 8.35 | 9.15 | | | | Heating capacity * | | kW | 5.28 | 5.95 | 8.76 | 9.97 | 12.04 | 13.13 | 18.91 | 20.40 | | | | Nominal water flow
| Nominal water flow I/s | | 0.15 | 0.18 | 0.26 | 0.30 | 0.34 | 0.38 | 0.55 | 0.62 | | | | Power supply | | V.ph.Hz | | 230.1.50 | | | | | | | | | | Nominal airflow | | m3/h | 595 | 595 | 1040 | 1040 | 1415 | 1415 | 2220 | 2220 | | | | Fan | | W | 76 | 76 | 140 | 140 | 174 | 174 | 256 | 256 | | | | Available static pres | sure | Pa | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | | | | Water connections | diameter | Inch | 1/2" | 1/2" | 1/2" | 1/2" | 1/2" | 1/2" | 1/2" | 1/2" | | | | Pressure drop in coo | oling | kPa | 28.7 | 19.0 | 27.7 | 51.2 | 27.8 | 21.2 | 25.1 | 35.9 | | | | Pressure drop in hea | ating | kPa | 17.6 | 12.0 | 16.9 | 31.3 | 19.8 | 13.3 | 16.0 | 25.2 | | | | Sound pressure leve | ** | dB(A) | 50 | 50 | 50 | 50 | 55 | 55 | 57 | 57 | | | | | Height | mm | 218 | 218 | 248 | 248 | 248 | 248 | 248 | 248 | | | | Dimensions | Width | mm | 689 | 689 | 904 | 904 | 1119 | 1119 | 1570 | 1570 | | | | | Depth | mm | 511 | 511 | 511 | 511 | 511 | 511 | 511 | 511 | | | | Weight | | kg | 18 | 18 | 22 | 22 | 33 | 33 | 45 | 45 | | | ### Technical features 4 pipe system | Model | | | YHP-O 130+1 | YHP-O 230+1 | YHP-O 330+1 | YHP-O 430+1 | | | | | | |------------------------|--------------------|---------|-------------|-------------|-------------|-------------|--|--|--|--|--| | Cooling capacity * | Cooling capacity * | | 2.94 | 4.87 | 6.50 | 10.33 | | | | | | | Sensible cooling cap | acity * | kW | 2.27 | 3.91 | 5.30 | 8.35 | | | | | | | Heating capacity * | | kW | 3.04 | 4.76 | 6.16 | 9.63 | | | | | | | Nominal water flow | additional coil | I/s | 0.07 | 0.11 | 0.15 | 0.23 | | | | | | | Power supply | | V.ph.Hz | | 230.1.50 | | | | | | | | | Nominal airflow | | m3/h | 595 | 1040 | 1415 | 2220 | | | | | | | Fan | | W | 76 | 140 | 174 | 256 | | | | | | | Available static press | sure | Pa | 80 | 80 | 80 | 80 | | | | | | | Water connections of | liameter | Inch | 1/2" | 1/2" | 1/2" | 1/2" | | | | | | | Pressure drop in coo | ling | kPa | 28.7 | 27.7 | 27.8 | 25.1 | | | | | | | Pressure drop in hea | ting | kPa | 15.8 | 9.4 | 12.7 | 37.9 | | | | | | | Sound pressure leve | ** | dB(A) | 50 | 50 | 55 | 57 | | | | | | | | Height | mm | 218 | 248 | 248 | 248 | | | | | | | Dimensions | Width | mm | 689 | 904 | 1119 | 1570 | | | | | | | | Depth | mm | 511 | 511 | 511 | 511 | | | | | | | Weight | | kg | 23 | 27 | 41 | 56 | | | | | | Referred data at maximum speed fan and O Pa available static pressure. **图YORK** ^{*} Cooling capacity: Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C. Heating capacity: Room temperature 20°C - Water inlet temperature: 70/60°C (4 pipes), 60/50° C (2 pipes). ^{**} Sound pressure level in a 100 m $^{\rm 3}$ room, at 1 m distance and riverberating time of 0.5 s ## YHK Hydro Cassette 2 & 4 pipe system A complete range from 1.3 kW to 11.1 kW #### Wired controls JMC-3A Remote three speeds controller WC-T JWC-3V + Electronic thermostat and Summer/Winter switch JWC-AU Automatic JWC-T #### JTM-B Digital Automatic Remote controller #### TMO 503 SV2 Digital Automatic Remote controller to be mounted in the standard light wall box Coloured versions available as an option **TUC03+ Terminal unit controller** BacNET and N2 Metasys network compatible Selection software ### **Features** - \cdot Cooling duty from 1.3 to 11.1 kW - · 2 & 4 pipes systems in all range - 2 sizes: 600 x 600 & 800 x 800 - · Possible choice between 6 fan speeds - Condensate pump integrated in all range 2/3 way valves fitted or supplied loose in all range - $\boldsymbol{\cdot}$ Coloured versions, possible to change the colour of the grill - · Possible to select a complete range of controls - Electric heater fitted as an option for all range (2 pipe only) - · All metal parts insulated to avoid condensations ### YHK Hydro Cassette 1.3 to 11.1 kW ### Technical features | Model -2 pipes | | | YHK 20-2 | YHK 25-2 | YHK 40-2 | YHK 50-2 | YHK 65-2 | YHK 95-2 | YHK 110-2 | |--|-----|---|--|---|--|--|--|--|---| | | (.) | max | 1.92 | 2.64 | 4.26 | 4.93 | 6.08 | 9.39 | 10.93 | | Total cooling capacity 2 Pipes [kW] | (1) | med | 1.60 | 2.31 | 3.30 | 3.82 | 4.86 | 6.72 | 8.36 | | | | min | 1.25 | 1.82 | 2.23 | 2.91 | 4.18 | 5.27 | 5.27 | | | | max | 1.58 | 2.00 | 3.11 | 3.65 | 4.51 | 6.36 | 8.08 | | Sensible cooling capacity 2 Pipes [kW] | (1) | med | 1.29 | 1.72 | 2.35 | 2.75 | 3.53 | 4.42 | 6.00 | | | | min | 0.99 | 1.33 | 1.55 | 2.05 | 3.00 | 3.42 | 3.67 | | | | max | 340 | 461 | 745 | 863 | 1 060 | 1 636 | 1 909 | | Water flow in cooling 2 Pipes [I/h] | (1) | med | 280 | 402 | 574 | 667 | 845 | 1 166 | 1 453 | | Water now in cooling 2 ripes [i/rij | (±) | | 219 | 316 | 387 | 506 | 724 | 913 | 913 | | | | min | | | | | | | | | 0 1 1 20 10 1 | (a) | max | 10 | 9.7 | 20.9 | 19.7 | 21.6 | 26.9 | 35.6 | | Pressure drop in cooling 2 Pipes [kPa] | (1) | med | 7 | 7.6 | 13.0 | 12.4 | 14.3 | 14.7 | 21.8 | | | | min | 4.5 | 4.9 | 6.4 | 7.5 | 10.9 | 9.4 | 9.4 | | | | max | 2.24 | 2.80 | 4.37 | 5.15 | 6.50 | 9.23 | 11.72 | | Heating capacity 2 pipes [kW] | (2) | med | 1.80 | 2.42 | 3.28 | 3.85 | 5.03 | 6.40 | 8.55 | | 5 5 y pp. 1 | . , | min | 1.38 | 1.85 | 2.12 | 2.85 | 4.27 | 4.92 | 5.12 | | | | max | 340 | 461 | 745 | 863 | 1 060 | 1 636 | 1 909 | | Water flow in heating 2 pipes [I/h] * | (2) | | 280 | 402 | 574 | 667 | 845 | 1 166 | 1 453 | | water now in neating 2 pipes [i/ii] | (2) | med | | | | | | | | | | | min | 219 | 316 | 387 | 506 | 724 | 913 | 913 | | | | max | 10.7 | 9.0 | 10.2 | 17.8 | 15.0 | 22.0 | 33.8 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 7.2 | 6.9 | 6.1 | 10.6 | 9.4 | 11.4 | 19.2 | | | | min | 4.4 | 4.3 | 2.8 | 6.2 | 7.0 | 7.1 | 7.6 | | | | max | 4.6 | 5.7 | 9.3 | 10.6 | 13.1 | 19.8 | 23.7 | | Heating capacity 2 pipes [kW] | (3) | med | 3.7 | 4.9 | 7 | 8.3 | 10.7 | 13.4 | 17.3 | | riedurig capacity z pipes [KVV] | (3) | | | | | | | | | | | | min | 2.8 | 4.2 | 4.9 | 6.1 | 8.6 | 10.3 | 10.3 | | | | max | 393 | 488 | 795 | 914 | 1 130 | 1 699 | 2 037 | | Water flow in heating 2 pipes [I/h] | (3) | med | 315 | 422 | 598 | 709 | 874 | 1 155 | 1 484 | | 3 | | min | 240 | 360 | 415 | 524 | 741 | 882 | 882 | | | | max | 9.9 | 8.4 | 12.5 | 16 | 17.5 | 20.9 | 28.9 | | Pressure drop in heating 2 pipes [kPa] | (3) | med | 6.5 | 6.4 | 7.6 | 10 | 11.3 | 10.6 | 16 | | riessure drop in neading 2 pipes [kraj | (3) | | | | | | | | | | | | min | 4 | 4.8 | 4 | 5.9 | 8.4 | 6.7 | 6.7 | | | | | \// \/ · | \/!!!/ a= . | | \/ \/ \ | MIII | \/ | \### | | Model -4 pipes | | | YHK 20-4 | YHK 25-4 | YHK 40-4 | YHK 50-4 | YHK 65-4 | YHK 95-4 | YHK 110-4 | | | (.) | max | 2.27 | 2.66 | 3.27 | 3.72 | 6.26 | 7.59 | 8.72 | | Total cooling capacity 4 Pipes [kW] | (1) | med | 1.93 | 2.33 | 2.61 | 2.96 | 4.98 | 5.60 | 6.84 | | | | min | 1.49 | 1.83 | 1.83 | 2.33 | 4.11 | 4.48 | 4.48 | | | | max | 1.84 | 1.94 | 2.49 | 2.88 | 4.61 | 5.71 | 6.67 | | Sensible cooling capacity 4 Pipes [kW] | (1) | med | 1.52 | 1.68 | 1.94 | 2.23 | 3.60 | 4.09 | 5.09 | | | (-/ | min | 1.13 | 1.32 | 1.32 | 1.72 | 2.93 | 3.21 | 3.21 | | | | | 401 | 464 | 574 | 655 | 1 090 | 1 326 | 1 529 | | Makes Germin and the Amines [t/b] | (1) | max | | | | | | | | | Water flow in cooling 4 pipes [I/h] | (1) | med | 337 | 406 | 456 | 519 | 865 | 974 | 1 192 | | | | min | 260 | 318 | 318 | 406 | 712 | 777 | 777 | | | | max | 13.5 | 8.8 | 13.4 | 17 | 18.9 | 26.9 | 34.7 | | Pressure drop in cooling 4 pipes [kPa] | (1) | med | 10 | 6.9 | 8.8 | 11.2 | 12.5 | 15.4 | 22.1 | | , , , , , , , , , | . , | min | 6 | 4.6 | 4.6 | 7.2 | 8.8 | 10.3 | 10.3 | | | | max | 2.66 | 3.04 | 3.86 | 4.19 | 8.02 | 9.66 | 11.16 | | Heating capacity 4 since [LAM] | (2) | | | | | | | | | | Heating capacity 4 pipes [kW] | (3) | med
· | 2.23 | 2.66 | 3.04 | 3.33 | 6.33 | 7.15 | 8.80 | | | | min | 1.72 | | | | L 77 | 5.69 | 5.69 | | | _ | | | 2.13 | 2.13 | 2.61 | 5.21 | | | | _ | | max | 261 | 298 | 378 | 426 | 783 | 946 | 1 092 | | Water flow in heating 4 pipes [I/h] | (3) | | | | | | | | | | Water flow in heating 4 pipes [I/h] | (3) | max
med | 261 | 298 | 378 | 426 | 783 | 946 | 1 092
858 | | Water flow in heating 4 pipes [I/h] | (3) | max
med
min | 261
219
169 | 298
260
209 | 378
298
209 | 426
341
267 | 783
618
508 | 946
697
555 | 1 092
858
555 | | | | max
med
min
max | 261
219
169
11.4 | 298
260
209
8.7 | 378
298
209
13.3 | 426
341
267
15.0 | 783
618
508
17.2 | 946
697
555
24.0 | 1 092
858
555
31.2 | | Water flow in heating 4 pipes [l/h] Pressure drop in heating 4 pipes [kPa] | (3) | max
med
min
max
med | 261
219
169
11.4
8.3 | 298
260
209
8.7
6.8 | 378
298
209
13.3
8.7 | 426
341
267
15.0
9.9 | 783
618
508
17.2
11.2 | 946
697
555
24.0
14.0 | 1 092
858
555
31.2
20.3 | | | | max
med
min
max
med
min |
261
219
169
11.4
8.3
5.2 | 298
260
209
8.7
6.8
4.6 | 378
298
209
13.3
8.7
4.6 | 426
341
267
15.0
9.9
6.4 | 783
618
508
17.2
11.2
7.9 | 946
697
555
24.0
14.0
9.3 | 1 092
858
555
31.2
20.3
9.3 | | Pressure drop in heating 4 pipes [kPa] | | max
med
min
max
med
min
max | 261
219
169
11.4
8.3
5.2
610 | 298
260
209
8.7
6.8
4.6 | 378
298
209
13.3
8.7
4.6
710 | 426
341
267
15.0
9.9
6.4
880 | 783
618
508
17.2
11.2
7.9
1140 | 946
697
555
24.0
14.0
9.3
1500 | 1 092
858
555
31.2
20.3
9.3
1 820 | | Pressure drop in heating 4 pipes [kPa] | | max
med
min
max
med
min | 261
219
169
11.4
8.3
5.2 | 298
260
209
8.7
6.8
4.6 | 378
298
209
13.3
8.7
4.6 | 426
341
267
15.0
9.9
6.4 | 783
618
508
17.2
11.2
7.9 | 946
697
555
24.0
14.0
9.3 | 1 092
858
555
31.2
20.3
9.3 | | Pressure drop in heating 4 pipes [kPa] | | max
med
min
max
med
min
max | 261
219
169
11.4
8.3
5.2
610 | 298
260
209
8.7
6.8
4.6 | 378
298
209
13.3
8.7
4.6
710 | 426
341
267
15.0
9.9
6.4
880 | 783
618
508
17.2
11.2
7.9
1140 | 946
697
555
24.0
14.0
9.3
1500 | 1 092
858
555
31.2
20.3
9.3
1 820 | | Pressure drop in heating 4 pipes [kPa] | | max
med
min
max
med
min
max
med
min | 261
219
169
11.4
8.3
5.2
610
420
310 | 298
260
209
8.7
6.8
4.6
520
420
310 | 378
298
209
13.3
8.7
4.6
710
500
320 | 426
341
267
15.0
9.9
6.4
880
610
430 | 783
618
508
17.2
11.2
7.9
1140
820
630 | 946
697
555
24.0
14.0
9.3
1500
970
710 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] | | max
med
min
max
med
min
max
med
min
max | 261
219
169
11.4
8.3
5.2
610
420
310
49 | 298
260
209
8.7
6.8
4.6
520
420
310
45 | 378
298
209
13.3
8.7
4.6
710
500
320
53 | 426
341
267
15.0
9.9
6.4
880
610
430
59 | 783
618
508
17.2
11.2
7.9
1140
820
630
48 | 946
697
555
24.0
14.0
9.3
1500
970
710
53 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58 | | Pressure drop in heating 4 pipes [kPa] | | max
med
min
max
med
min
max
med
min
max
med | 261
219
169
11.4
8.3
5.2
610
420
310
49 | 298
260
209
8.7
6.8
4.6
520
420
420
45
40 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45 | 426
341
267
15.0
9.9
6.4
880
610
430
59 | 783
618
508
17.2
11.2
7.9
1140
820
630
48 | 946
697
555
24.0
14.0
9.3
1500
970
710
53 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] | | max
med
min
max
med
min
max
med
min
max
med
min | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] | (3) | max
med
min
max
med
min
max
med
min
max
med
min
max | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] | | max
med
min
max
med
min
max
med
min
max
med
min | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] | (3) | max med min | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40 | 298
260
209
8.7
6.8
4.6
520
420
330
45
40
33
36
31 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34
49 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] | (3) | max
med
min
max
med
min
max
med
min
max
med
min
max | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] Power supply [V-ph-Hz] | (3) | max med min | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40
31
24 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36
31 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36
24 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32
230V/1ph/50hZ | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31
25 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34
49
39
25 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] Power supply [V-ph-Hz] Power input [W] | (3) | max med min | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40
31
24 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36
31
24 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36
24 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32
230V/1ph/50hZ | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31
24 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31
25 | 1 092
858
555
31.2
20.3
9.3
1 820
710
58
48
34
49
39
25 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] Power supply [V-ph-Hz] Power input [W] Absorbed current [A] | (3) | max med min | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40
31
24 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36
31
24 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36
24 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32
230V/1ph/50hZ | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31
24 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31
25 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34
49
39
25 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] Power supply [V-ph-Hz] Power input [W] Absorbed current
[A] Water content (2 pipes) [I] | (3) | max med min max max max max | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40
31
24 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36
31
24 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36
24 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32
230V/1ph/50hZ
90
0.45
2.1 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31
24 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31
25 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34
49
39
25
170
0.74
4.0 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] Power supply [V-ph-Hz] Power input [W] Absorbed current [A] Water content (2 pipes) [] | (3) | max med min max max max max | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40
31
24 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36
31
24 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36
24 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32
230V/1ph/50hZ | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31
24 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31
25 | 1 092
858
555
31.2
20.3
9.3
1 820
710
58
48
34
49
39
25 | | Pressure drop in heating 4 pipes [kPa] Air flow [m3/h] Sound power level [dB(A)] Sound pressure level [dB(A)] Power supply [V-ph-Hz] Power input [W] Absorbed current [A] Water content (2 pipes) [] | (3) | max med min max max max max | 261
219
169
11.4
8.3
5.2
610
420
310
49
40
33
40
31
24 | 298
260
209
8.7
6.8
4.6
520
420
310
45
40
33
36
31
24 | 378
298
209
13.3
8.7
4.6
710
500
320
53
45
33
44
36
24 | 426
341
267
15.0
9.9
6.4
880
610
430
59
49
41
50
40
32
230V/1ph/50hZ
90
0.45
2.1 | 783
618
508
17.2
11.2
7.9
1140
820
630
48
40
33
39
31
24 | 946
697
555
24.0
14.0
9.3
1500
970
710
53
40
34
44
31
25 | 1 092
858
555
31.2
20.3
9.3
1 820
1 280
710
58
48
34
49
39
25
170
0.74
4.0 | Depth mm Manufacturer reserves the rights to change specifications without prior notice. ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C (2) Room temperature 20°C - Water temperature: 45/40 °C (3) Room temperature 20°C - Water inlet temperature: 65/55°C (4) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 ### YHK-ECM Inverter Hydro Cassette 2 & 4 pipe system A complete range from 1.8 kW to 10.8 kW #### Wired control #### JTM-B Wall control with display that allows controlling one or more units in Master/Slave mode. The control is equipped with internal sensor to detect the room temperature, which can be defined as a priority compared to the return air sensor on the fan coil. #### Infrared control TUC03+ Terminal unit controller BacNET and N2 Metasys network compatible Coloured versions available as an option YHK ECM water cassette is the result of significant technical and design research focused on providing an avant-garde product in terms of performance, low noise and control flexibility. YHK ECM series uses an innovative brushless electric motor controlled by an inverter card that varies the air flow continuously by means of a 0-10 V signal. The extreme efficiency, also at a low speed, makes it possible to greatly reduce electrical consumption (more than 75% less in comparison to a traditional motor) with absorption values, under normal operating conditions, that are no greater than 10 Watt in the entire range. #### **Features** - \cdot Cooling duty from 1.8 to 10.8 kW - · YHK: models with infrared control (standard) - · YHK-MP: models with wired control (accessory) - · 2 (-2) & 4 (-4 or -6) pipes systems - · 2 sizes: 600 x 600 & 800 x 800 - · Condensate pump integrated in all range - \cdot 2/3 way valves fitted or supplied loose in all range - Coloured versions, possible to change the colour of the grid and the frame - · All metal parts insulated to avoid condensations - · Inverter fan motor for a very quiet operation - Electrical consumption reduced by up to 75% - · Specific range of controllers with master-slave function Selection software ### YHK-ECM Inverter Hydro Cassette 1.8 to 10.8 kW #### Technical features | Model -2 pipes | | | YHK-ECM 25-2 | YHK-ECM 40-2 | YHK-ECM 50-2 | YHK-ECM 65-2 | YHK-ECM 95-2 | |--|-----|---------|--------------|--------------|--------------|--------------|--------------| | | | max 10v | 2.73 | 4.30 | 4.96 | 6.30 | 10.69 | | Total cooling capacity 2 Pipes [kW] | (1) | med 5v | 2.16 | 3.04 | 3.85 | 5.13 | 7.69 | | | | min 1v | 1.84 | 2.24 | 2.55 | 4.20 | 5.28 | | | | max | 2.07 | 3.15 | 3.68 | 4.69 | 7.83 | | Sensible cooling capacity 2 Pipes [kW] | (1) | med | 1.60 | 2.16 | 2.79 | 3.75 | 5.50 | | | | min | 1.35 | 1.57 | 1.80 | 3.02 | 3.68 | | | (1) | max | 473 | 744 | 864 | 1 089 | 1 848 | | Water flow in cooling 2 Pipes [I/h] | | med | 373 | 524 | 666 | 885 | 1 328 | | | | min | 317 | 385 | 441 | 723 | 909 | | | (1) | max | 10.1 | 15.1 | 19.7 | 22.7 | 33.0 | | Pressure drop in cooling 2 Pipes [kPa] | | med | 6.6 | 9.4 | 12.4 | 15.6 | 18.5 | | | | min | 4.9 | 4.6 | 5.9 | 10.9 | 9.4 | | | | max | 2.87 | 4.36 | 5.15 | 6.70 | 10.56 | | Heating capacity 2 pipes [kW] | (2) | med | 2.22 | 2.98 | 3.85 | 5.30 | 7.34 | | . , | | min | 1.85 | 2.12 | 2.46 | 4.27 | 4.90 | | | | max | 9.4 | 13.2 | 17.8 | 21.6 | 28.1 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 5.9 | 6.6 | 10.6 | 14.2 | 14.6 | | | | min | 4.3 | 3.6 | 4.7 | 9.6 | 7.0 | | Model -4 pipes | | | YHK-ECM 25-4 | YHK-ECM 40-6 | YHK-ECM 50-6 | YHK-ECM 65-4 | YHK-ECM 95-6 | |---|--------|-----|--------------|--------------|---------------|--------------|--------------| | | | max | 2.75 | 3.90 | 4.47 | 6.48 | 9.76 | | Total cooling capacity 4 Pipes [kW] | (1) | med | 2.17 | 2.81 | 3.51 | 5.29 | 7.14 | | | | min | 1.85 | 2.09 | 2.37 | 4.29 | 4.97 | | | | max | 2.06 | 2.92 | 3.40 | 4.80 | 7.29 | | Sensible cooling capacity 4 Pipes [kW] | (1) | med | 1.59 | 2.03 | 2.60 | 3.82 | 5.17 | | | | min | 1.34 | 1.49 | 1.70 | 3.07 | 3.51 | | | | max | 476 | 676 | 779 | 1 120 | 1 697 | | Water flow in cooling 4 pipes [I/h] | (1) | med | 375 | 483 | 608 | 908 | 1 233 | | 9 | | min | 318 | 359 | 409 | 740 | 856 | | | | max | 9.5 | 10.3 | 13.1 | 19.8 | 30.1 | | Pressure drop in cooling 4 pipes [kPa] | (1) | med | 6.2 | 5.6 | 8.4 | 13.6 | 17.0 | | , , , , , , | | min | 4.6 | 3.3 | 4.1 | 9.4 | 8.8 | | | | max | 3.18 | 2.91 | 3.29 | 8.24 | 8.33 | | Heating capacity 4 pipes [kW] | (3) | med | 2.51 | 2.20 | 2.66 | 6.65 | 6.27 | | | (-) | min | 2.13 | 1.73 | 1.92 | 5.41 | 4.58 | | | | max | 311 | 288 | 326 | 805 | 818 | | Water flow in heating 4 pipes [I/h] | (3) | med | 245 | 217 | 263 | 649 | 616 | | 3 11 22 | | min | 209 | 170 | 189 | 528 | 449 | | | | max | 9.4 | 6.7 | 8.4 | 18.1 | 14.3 | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 6.1 | 4.1 | 5.7 | 12.3 | 8.6 | | 2 P P P P P P P P P P P P P P P P P P P | (-) | min | 4.6 | 2.6 | 3.2 | 8.5 | 4.9 | | | | max | 535 | 710 | 880 | 1 165 | 1 770 | | Air flow [m3/h] | | med | 380 | 445 | 610 | 870 | 1 130 | | | | min | 310 | 310 | 360 | 630 | 710 | | | | max | 47 | 54 | 60 | 48 | 57 | | Sound power level [dB(A)] | | med | 39 | 43 | 50 | 39 | 47 | | 2. ()2 | | min | 33 | 33 | 37 | 33 | 34 | | | | max | 38 | 45 | 51 | 39 | 48 | | Sound pressure level [dB(A)] | (4) | med | 30 | 34 | 41 | 30 | 38 | | | . , | min | 24 | 24 | 28 | 24 | 25 | | Power supply [V-ph-Hz] | | | | | 230V/1ph/50hZ | | | | Power input [W] | | max | 16 | 31 | 62 | 33 | 108 | | Water content (2 pipes) [I] | | - | 1.4 | 2.1 | 2.1 | 3.0 | 4.0 | | Absorbed current [A] | | max | 0.15 | 0.27 | 0.52 | 0.28 | 0.92 | | | Height | | 275 | 275 | 275 | 303 | 303 | | Dimensions | Width | mm | 575 | 575 | 575 | 820 | 820 | | | Depth | mm | 575 | 575 | 575 | 820 | 820 | - (1) Room temperature 27°C d.b., 19°C w.b. Water temperature 7/12 °C (2) Room temperature 20°C Water temperature: 45/40 °C (3) Room temperature 20°C Water inlet temperature: 65/55°C (4) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. - * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 Condensate pump integrated Metal parts insulated to avoid 2 or 3 way valves fitted or supplied loose in all sizes Outer casing as an option to integrate the water cassette into any environment Manufacturer reserves the rights to change specifications without prior notice. | Model with AC motor (without air diffuser) | | YHKY 20 | YHKY 25 | YHKY 40 | YHKY 50 | YHKY 65 | YHKY 95 | YHKY 110 | |
---|---|---------------|----------|----------|--|----------|-----------|----------|--| | Coccetto VUIVV | 2 pipe system | 0079100K | 0079000K | 0079001K | 0079002K | 0079003K | 0079004K | 0079005K | | | Cassette YHKY | 4 pipe system | 0079110K | 0079010K | 0079011K | 0079012K | 0079013K | 0079014K | 0079015K | | | Cassette YHKY-MP | 2 pipe system | 0079170K | 0079171K | 0079172K | 0079173K | 0079174K | 0079175K | 0079176K | | | (IR remote control and sensor NOT included) | 4 pipe system | 0079180K | 0079181K | 0079182K | 0079183K | 0079184K | 0079185K | 0079186K | | | Cassette YHKY-E - with electric resistance | 2 pipe system | - | 0079060K | 0079061K | 0079062K | 0079063K | 0079064K | 0079065K | | | Cassette YHKY-MP-E - with electric resistance | 2 pipe system | - | 0079191K | 0079192K | 0079193K | 0079194K | 0079195K | 0079196K | | | | 2 pipe system | 0079120K | 0079020K | 0079021K | 0079022K | 0079023K | 0079024K | 0079025K | | | Cassette YHKY-REB with remote electric board | 4 pipe system | 0079120K | 0079030K | 0079031K | 0079032K | 0079033K | 0079034K | 0079035K | | | Model with ECM motor (without air diffuse | | - | YHKY 25 | YHKY 40 | YHKY 50 | YHKY 65 | YHKY 95 | - | | | William Willi ECIM Illotor (Without all ulliuse | | | | | | | | _ | | | Cassette YHKY-ECM - basic model | 2 pipe system | | 0079801K | 0079802K | 0079803K | 0079804K | 0079805K | | | | | 4 pipe system | - | 0079811K | 0079812K | 0079813K | 0079814K | 0079815K | - | | | Cassette YHKY-MP- ECM | 2 pipe system | - | 0079911K | 0079912K | 0079913K | 0079914K | 0079915K | - | | | (IR remote control and sensor NOT included) | 4 pipe system | - | 0079921K | 0079922K | 0079923K | 0079924K | 0079925K | - | | | Cassette YHKY-ECM-E - with electric resistance | 2 pipe system | - | 0079841K | 0079842K | 0079843K | 0079844K | 0079845K | - | | | Cassette YHKY-ECM-MP-E - with electric resistance | 2 pipe system | - | 0079901K | 0079902K | 0079903K | 0079904K | 0079905K | - | | | Mandatory accessories (units cannot work | without them |) | | | | | | | | | Air diffuser - intake grid, frame and louvres in RAL 9003 w | hite colour | - | AKP | A 600 | | | AKPA 800 | | | | Accessories (factory fitted) | into coloui | | 71117 | | | | 74474 000 | | | | Valves (220V On/Off) | | | | | | | | | | | , | n) | | 207 | 0540 | | | 0070544 | | | | 3 way valve + mounting kit for 2 pipe models (factory fitter | | | | 9510 | | | 9079511 | | | | 3 way valve + mounting kit for 4 pipe models (factory fitte | | | | 9512 | | | 9079513 | | | | 2 way valve + mounting kit for 2 pipe models (factory fitter | | | | 9515 | | | 9079516 | | | | 2 way valve + mounting kit for 4 pipe models (factory fitte | d) | | 907 | 9517 | | | 9079518 | | | | 2 way DN 15 balance valve for main coil + connection kit (| fact. fitted) * | | 907 | 9771 | | 9079791 | | - | | | 2 way DN 20 balance valve for main coil + connection kit (| fact. fitted) * | | | - | | | 907 | 9792 | | | 2 way DN 15 balance valve for additional coil + connection | kit (fact, fitted) * | | 907 | 9773 | | | 9079793 | | | | Accessories (supplied loose) | | | | - | | | | | | | | | | | | | | | | | | Air diffusers / Panels | | | | | | | | | | | Air diffuser - other colours (*) | | | | Con | tact Johnson Con | trols | | | | | Valves (220V On/Off) | | | | | | | | | | | 3 way valve + mounting kit for 2 pipe models (not fitted) | | | 907 | 9500 | | | 9079501 | | | | 3 way valve + mounting kit for 4 pipe models (not fitted) | | | 907 | 9502 | | | 9079503 | | | | 2 way valve + mounting kit for 2 pipe models (not fitted) | | | 907 | 9505 | | 9079506 | | | | | 2 way valve + mounting kit for 4 pipe models (not fitted) | | | | 9507 | 9079508 | | | | | | 2 way DN 15 balance valve for main coil + connection kit (| not fitted) * | | | 9761 | | 9079781 | 3073300 | _ | | | 2 way DN 20 balance valve for main coil + connection kit (| | | 307 | _ | | 3073701 | 007 | 9782 | | | | | | 007 | 7762 | | | 9079783 | 3702 | | | 2 way DN 15 balance valve for additional coil + connection | Kit (Hot Hitled) | | 907 | 9763 | | t1- | 90/9/03 | | | | Other type of valves | | | | Con | tact Johnson Con | UUIS | | | | | Other Accessories | | | | | | | | | | | Outer casing OCA 600 | | | 907 | 9240 | | | = | | | | Outer casing OCA 800 | | | | - | | | 9079250 | | | | 3 way valve + mounting kit for units with outer casing OCA | (not fitted) | | 907 | 9155 | | | 9079156 | | | | Fresh air duct FAD | | | | | 6078005 | | | | | | Fresh air kit 1 way not suitable for units with outer casing (| OCA - FAK 600 | | 907 | 9230 | | | - | | | | Fresh air kit 1 way not suitable for units with outer casing (| | | | - | | | 9079231 | | | | MD-600 Metal Grid | JET 1711 000 | | | | 9079420 | | 3073231 | | | | | | | | | 9079417 | | | | | | MD-800 Metal Grid | | | | | 90/941/ | | | | | | CONTROLS for YHKY (AC versions) | | | | | | | | | | | Remote three speed control JWC-3V (1) (4) | | | 906 | 6642 | | | 9066642 | | | | Remote three speed control + electronic thermostat and r | nanual S/W | | 9066 | 630K | | | 9066630K | | | | switch JWC-T (2) | | | | | | | 300000011 | | | | Remote three speed control + electronic thermostat and c
manual S/W switch JWC-TQR (2) (3) | entralized/ | | 9066 | 632K | | | 9066632K | | | | 111a11ua1 3/11 5W1(C11 1111C-1 QK (Z) (3) | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | | /W switch - | | 9066 | 331E | | | 9066331E | | | | Automatic speed control with electronic thermostat and SIWC-ALI (to be used with IPE-ALI and IP-ALI only) (2) (2) | | | | | | | | | | | | | | 000 | 6676 | | | 9066676 | | | | Automatic speed control with electronic thermostat to be | | | 906 | | | | | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with U | | | | 0174 | | | 9060174 | | | | Automatic speed control with electronic thermostat to be
mounted in the light wall box WM-503 (to be used with UI
Electromechanical thermostat T2T (4) (5) | 2–503 only) | | | 0174 | 90666/1 | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, | 2-503 only)
fitted on the unit | | | 0174 | 9066641 | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, Power unit JP-AU for JWC-AU and JTM-B remote controls, no | P-503 only) fitted on the unit t fitted on the unit | | | 0174 | 9066640 | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, Power unit JP-AU for JWC-AU and JTM-B remote controls, no Power unit UP-503 for WM-503 remote control only, not fit | 2–503 only) fitted on the unit titted on the unit tted on the unit | | 906 | 0174 | | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, Power unit JP-AU for JWC-AU and JTM-B remote controls, no Power unit UP-503 for WM-503 remote control only, not fit | 2–503 only) fitted on the unit titted on the unit tted on the unit | te packaging | 906 | 0174 | 9066640 | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, Power unit JP-AU for JWC-AU and JTM-B remote
controls, no Power unit UP-503 for WM-503 remote control only, not fi Control accessories for all versions (supplied | 2–503 only) fitted on the unit titted on the unit tted on the unit | te packaging | 906 | 0174 | 9066640 | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, no Power unit JP-AU for JWC-AU and JTM-B remote controls, no Power unit UP-503 for WM-503 remote control only, not fit Control accessories for all versions (supplied Low temperature cut-out for control JWC-T | P-503 only) fitted on the unit t fitted on the unit tted on the unit d with separa | te packaging | 906 | 0174 | 9066640
9066677 | | 9060174 | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, no Power unit JP-AU for JWC-AU and JTM-B remote controls, no Power unit JP-503 for WM-503 remote control only, not fit Control accessories for all versions (supplied Low temperature cut-out for control JWC-T Low temperature cut-out for controls JWC-TQR, WM-503 and | P-503 only) fitted on the unit fitted on the unit ted on the unit d with separate IP-AU power unit | ite packaging | 906 | 0174 | 9066640
9066677
9053048 | | 9060174 | | | | Automatic speed control with electronic thermostat and S JWC-AU (to be used with JPF-AU and JP-AU only) (2) (3) Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 (to be used with UI Electromechanical thermostat T2T (4) (5) Power unit JPF-AU for JWC-AU and JTM-B remote controls, no Power unit JP-AU for JWC-AU and JTM-B remote control only, not fi Control accessories for all versions (supplied Low temperature cut-out for control JWC-T Low temperature cut-out for control JWC-TQR, WM-503 and T2 sensor to be used as Change-over for JP-AU power unit Change-over 15-25 for control JWC-TOR | P-503 only) fitted on the unit fitted on the unit ted on the unit d with separate IP-AU power unit | ite packaging | 906 | 0174 | 9066640
9066677
9053048
3021090 | | 9060174 | | | ^{*} For 4 pipes unit must consider both the valve for main coil than the valve for additional coil. (1) Not to be used with valves. (2) Can be used with valves and/or low temperature cut-out. (3) Can be used with Change Over. (4) Not suitable with -E electric heater. (5) Not to be used with low temperature cut-out. ### Compatibility table / Codes | CONTROLS for YHKY-MP (AC versions) | YHKY 20 | YHKY 25 | YHKY 40 | YHKY 50 | YHKY 65 | YHKY 95 | YHKY 11 | |---|---------------|---------|---------|----------|---------|----------|---------| | Wall control JTM-B | | | | 9066331E | | | | | Wire, receiver and IR remote control kit RCS-RT03 | 9079117 | | | | | | | | Infra red remote control RT-03 | | | | 3021203 | | | | | Wire and receiver kit RCS | | | | 9079116 | | | | | Receiver for IR remote control for metal grid MD600 and MD800 RS | | 906 | 5338 | | | 9066338 | | | Multifunction control PSM-DI | | | | 3021293 | | | | | T2 sensor (to be used as change over or min.temp. sensor) T2 | | | | 9025310 | | | | | CONTROLS for YHKY-ECM (ECM motor) | | | | | | | | | Automatic speed control with electronic thermostat and S/W switch – JWC-AU (to be used with JPF-AU and JP-AU only) (2) (3) | | 9066 | 632K | | | 9066632K | | | Automatic remote control with electronic thermostat, S/W switch and liquid crystall display JTM-B (to be used with JPF-AU and JP-AU only) (2) (3) | | 9066 | 331E | | | 9066331E | | | WM-S-ECM Continuous fan speed control with electronic thermostat, summer/winter switch and LCD display | | | | 9066644 | | | | | Power unit JPF-AU for JWC-AU and JTM-B remote controls, fitted on the unit | | | | 9066641 | | | | | Power unit JP-AU for JWC-AU and JTM-B remote controls, not fitted on the unit | | | | 9066640 | | | | | Control accessories for all versions (supplied with separ | ate packaging |) | | | | | | | Low temperature cut-out for JP-AU power unit | | | | 3021090 | | | | | T2 sensor to be used as Change-over for JP-AU power unit | | | | 9025310 | | | | | Change-over 15-25 for control JWC-TQR | | | | 9053049 | | | | | CONTROLS for YHKY-MP-ECM (ECM motor) | | | | | | | | | Wall control JTM-B | | | | 9066331E | | | | | Wire, receiver and IR remote control kit RCS-RT03 | | | | 9079117 | | | | | Infra red remote control RT-03 | | | | 3021203 | | | | | Wire and receiver kit RCS | | | | 9079116 | | | | | Receiver for IR remote control for metal grid MD600 and MD800 RS | | | | 9066338 | | | | | Multifunction control PSM-DI | 3021293 | | | | | | | | T2 sensor (to be used as change over or min.temp. sensor) T2 | | | | 9025310 | | | | | Management system for a network of fan coils with MB | electronic bo | ard | | | | | | | Hardware / software supervisory system Net | | | | | | | | | Router-S for NET (default) or for BMS systems no provided by YORK | 3021290 | | | | | | | | Relay output board SIOS | | | | 3021292 | | | | ### **Dimensions** ### Sizes 20 to 50 (Version 600x600) All dimensions in mm. Drawings not a scale. ### Sizes 65 to 110 (Version 800x800) All dimensions in mm. Drawings not a scale. ### YFCC Coanda Hydro Cassette 2 & 4 pipe system A complete range from 0.9 kW to 4.0 kW Thanks to its unique diffuser, YFCC cassette units generate an airflow with a "coanda" effect. The unit is suitable for installation in a suspended ceiling. Air intake is from the bottom while the air is supplied parallel to the ceiling. The resulting "coanda" effect creates excellent draft free distribution of the air inside the room. Units can be supplied with 1 coil (2 pipe system) with optional electric heating element, or with 2 coils (4 pipe system) with one or two rows. Coanda effect #### Wired controls JMC-3A Remote three speeds controller JWC-T JWC-3V + Electronic thermostat and Summer/Winter switch JWC-AU Automatic JWC-T #### JTM-B Digital Automatic Remote controller TMO 503 SV2 Digital Automatic Remote controller to be mounted in the standard light wall hox #### Infrared control ### **Features** - $\boldsymbol{\cdot}$ Coanda effect units, allowing easier and cheaper installation - · Cooling duty from 0.9 to 4.0 kW - · 2 & 4 pipes systems in all range - 3 sizes: 600 x 600, 600 x 1000 & 600 x 1200 - · 2/3 way valves fitted or supplied loose in all range - · Left and right hand (optional) water connections - 6 fan speeds (3 pre-wired) - · Air throw till 7.6m (cooling) and 9.5m (heating) Selection software ### YFCC Coanda Hydro Cassette 0.9 to 4.0 kW #### Technical features | Model -2 pipes | | | YFCC 130 | YFCC 140 | YFCC 230 | YFCC 240 | YFCC 330 | YFCC 340 | |--|--------|-----|----------|----------|----------|----------|----------|----------| | | | max | 1.45 | 1.69 | 2.33 | 2.53 | 3.28 | 3.95 | | Total cooling capacity 2 Pipes [kW] | (1) | med | 1.04 | 1.17 | 1.59 | 1.69 | 2.80 | 3.50 | | | | min | 0.86 | 0.95 | 1.35 | 1.42 | 1.94 | 2.46 | | | | max | 1.13 | 1.26 | 1.73 | 1.84 | 2.45 | 2.91 | | Sensible cooling capacity 2 Pipes [kW] | (1) | med | 0.79 | 0.86 | 1.16 | 1.21 | 2.07 | 2.57 | | | | min | 0.64 | 0.69 | 0.98 | 1.02 | 1.41 | 1.78 | | | | max | 6.1 | 12.9 | 7.6 | 12.1 | 16.2 | 15.5 | | Pressure drop in cooling 2 Pipes [kPa] | (1) | med | 3.3 | 6.7 | 3.9 | 6.0 | 12.1 | 12.6 | | | | min | 2.4 | 4.7 | 2.9 | 4.4 | 6.4 | 6.7 | | | | max | 1.62 | 1.74 | 2.38 | 2.60 | 3.34 | 3.97 | | Heating capacity 2 pipes [kW] | (2) | med | 1.12 | 1.18 | 1.59 | 1.69 | 2.80 | 3.40 | | | | min | 0.91 | 0.95 | 1.33 | 1.41 | 1.91 | 2.40 | | | | max | 5.9 | 10.8 | 6.4 | 10.4 | 13.5 | 12.7 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 3.0 | 5.4 | 3.1 | 4.9 | 9.9 | 10.2 | | | | min | 2.1 | 3.7 | 2.3 | 3.5 | 5.1 | 5.3 | | | | max | 280 | 280 | 380 | 380 | 540 | 620 | | Air flow [m3/h] | | med | 180 | 180 | 240 | 240 | 440 | 540 | | | | min | 140 | 140 | 200 | 200 | 290 | 360 | | | | max | 52 | 52 | 48 | 48 | 52 | 55 | | Sound power level [dB(A)] | | med | 41 | 41 | 36 | 36 | 46 | 52 | | | | min | 35 | 35 | 33 | 33 | 35 | 41 | | | | max | 43 | 43 | 39 | 39 | 43 | 46 | | Sound pressure level [dB(A)] | (4) | med | 32 | 32 | 27 | 27 | 37 | 43 | | | | min | 26 | 26 | 24 | 24 | 26 | 32 | | Power supply [V-ph-Hz] | | | | | 230V/1 | ph/50Hz | | | | Power input [W] | | max | 66 | 66 | 71 | 71 | 84 | 84 | | Absorbed current [A] | | max | 0.30 | 0.30 | 0.32 | 0.32 | 0.38 | 0.38 | | | Height | mm | 309 | 309 | 309 | 309 | 309 | 309 | | Dimensions | Width | mm | 592 | 592 | 592 | 592 | 592 | 592 | | | Depth | mm | 592 | 592 | 970 | 970 | 1 192 | 1 192 | | Model -4 pipes | | | YFCC 130+1 | YFCC 230+1 | YFCC 330+1 | |--|--------|-----|------------|---------------|------------| | | | max | 1.45 | 1.45 | 3.28 | | Total cooling capacity 4 Pipes [kW] | (1) | med | 1.04 | 1.04 | 2.80 | | | | min | 0.86 | 0.86 | 1.94 | | | | max | 1.13 | 1.13 | 2.45 | | Sensible cooling capacity 4 Pipes [kW] |] (1) | med | 0.79 | 0.79 | 2.07 | | | | min | 0.64 0.64 | | 1.41 | | | | max | 6.1 | 6.1 | 16.2 | | Pressure drop in cooling 4 pipes [kPa] | (1) | med | 3.3 | 3.3 | 12.1 | | . 5 | | min | 2.4 | 2.4 | 6.4 | | | | max | 1.28 | 1.28 | 2.89 | | Heating capacity 4 pipes [kW] | (3) | med | 0.95 | 0.95 | 2.52 | | | | min | 0.81 | 0.81 | 1.86 | | | | max | 2.9 | 2.9 | 3.5 | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 1.7 | 1.7 | 2.7 | | | | min | 1.3 | 1.3 | 1.6 | | | | max | 280 | 380 | 540 | | Air flow [m3/h] | | med | 180 | 240 | 440 | | | | min | 140 | 200 | 290 | | | | max | 52 | 48 | 52 | | Sound power level [dB(A)] | | med | 41 | 36 | 46 | | | | min | 35 | 33 | 35 | | | | max | 43 |
39 | 43 | | Sound pressure level [dB(A)] | (4) | med | 32 | 27 | 37 | | | | min | 26 | 24 | 26 | | Power supply [V-ph-Hz] | | | | 230V/1ph/50Hz | | | Power input [W] | | max | 66 | 71 | 84 | | Absorbed current [A] | | max | 0.30 | 0.32 | 0.38 | | | Height | mm | 309 | 309 | 309 | | Dimensions | Width | mm | 592 | 592 | 592 | | | Depth | mm | 592 | 970 | 1 192 | ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. – Water temperature 7/12 °C (2) Room temperature 20°C – Water temperature: 45/40 °C (3) Room temperature 20°C – Water inlet temperature: 65/55°C Manufacturer reserves the rights to change specifications without prior notice. ⁽⁴⁾ The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 ### YFCC-ECM Coanda Hydro Cassette 2 & 4 pipe system A complete range from 0.8 kW to 4.0 kW Thanks to its unique diffuser, YFCC cassette units generate an airflow with a "coanda" effect. The unit is suitable for installation in a suspended ceiling. Air intake is from the bottom while the air is supplied parallel to the ceiling. The resulting "coanda" effect creates excellent draft free distribution of the air inside the room. Units can be supplied with 1 coil (2 pipe system) with optional electric heating element, or with 2 coils (4 pipe system) with one or two rows. Coanda effect Wired controls JWC-AU Automatic remote controller T-MR Wall control with display that allows controlling one or more units in Master/Slave mode. The control is equipped with internal sensor to detect the room temperature, which can be defined as a priority compared to the return air sensor on the fan coil. WM-S-ECM Continuous fan speed control with electronic thermostat and s/w switch Infrared control ### **Features** - · Coanda effect units, allowing easier and cheaper installation - · Cooling duty from 0.8 to 4.0 kW - · 2 & 4 pipes systems in all range - · 3 sizes: 600 x 600, 600 x 1000 & 600 x 1200 - \cdot 2/3 way valves fitted or supplied loose in all range - Left and right hand (optional) water connections - 6 fan speeds (3 pre-wired) - · Air throw till 7.6m (cooling) and 9.5m (heating) - ECM variable speed motor Selection software # YFCC-ECM Coanda Hydro Cassette 0.8 to 4.0 kW ### Technical features | Model -2 pipes | | | YFCC-ECM 130 | YFCC-ECM 140 | YFCC-ECM 230 | YFCC-ECM 240 | YFCC-ECM 330 | YFCC-ECM 340 | |--|--------|---------|--------------|--------------|--------------|--------------|--------------|--------------| | | | max 10v | 1.53 | 1.78 | 3.12 | 3.46 | 3.71 | 3.98 | | Total cooling capacity 2 Pipes [kW] | (1) | med 5v | 1.17 | 1.33 | 2.29 | 2.49 | 2.76 | 2.92 | | | | min 1v | 0.81 | 0.90 | 1.45 | 1.54 | 1.86 | 1.94 | | | | max | 1.21 | 1.35 | 2.37 | 2.56 | 2.79 | 2.94 | | Sensible cooling capacity 2 Pipes [kW] | (1) | med | 0.90 | 0.98 | 1.71 | 1.82 | 2.04 | 2.13 | | | | min | 0.61 | 0.66 | 1.06 | 1.11 | 1.36 | 1.40 | | | | max | 6.5 | 13.9 | 12.6 | 20.8 | 19.8 | 15.5 | | Pressure drop in cooling 2 Pipes [kPa] | (1) | med | 4 | 8.1 | 7.3 | 11.6 | 11.7 | 8.9 | | | | min | 2.1 | 4.1 | 3.2 | 5 | 5.8 | 4.3 | | | | max | 1.70 | 1.85 | 3.21 | 3.62 | 3.77 | 3.97 | | Heating capacity 2 pipes [kW] | (2) | med | 1.26 | 1.34 | 2.32 | 2.53 | 2.74 | 2.85 | | | | min | 0.85 | 0.89 | 1.43 | 1.52 | 1.82 | 1.87 | | | | max | 6.4 | 11.8 | 10.9 | 18.5 | 16.8 | 12.7 | | Pressure drop in heating 2 pipes [kPa] | (2) | med | 3.7 | 6.7 | 6.1 | 9.9 | 9.6 | 7.1 | | | | min | 1.9 | 3.3 | 2.6 | 4.0 | 4.6 | 3.4 | | | | max | 295 | 295 | 540 | 540 | 620 | 620 | | Air flow [m3/h] | | med | 205 | 205 | 370 | 370 | 430 | 430 | | | | min | 130 | 130 | 215 | 215 | 275 | 275 | | | | max | 55 | 55 | 56 | 56 | 58 | 58 | | Sound power level [dB(A)] | | med | 46 | 46 | 46 | 46 | 48 | 48 | | | | min | 35 | 35 | 34 | 34 | 36 | 36 | | | | max | 46 | 46 | 47 | 47 | 49 | 49 | | Sound pressure level [dB(A)] | (4) | med | 37 | 37 | 37 | 37 | 39 | 39 | | | | min | 26 | 26 | 25 | 25 | 27 | 27 | | Power supply [V-ph-Hz] | | | | | 230V/1 | ph/50Hz | | | | Power input [W] | | max | 29 | 29 | 37 | 37 | 42 | 42 | | Absorbed current [A] | | max | 0.24 | 0.24 | 0.29 | 0.29 | 0.35 | 0.35 | | | Height | mm | 309 | 309 | 309 | 309 | 309 | 309 | | Dimensions | Width | mm | 592 | 592 | 592 | 592 | 592 | 592 | | | Depth | mm | 592 | 592 | 970 | 970 | 1 192 | 1 192 | | Model -4 pipes | | | YFCC-ECM 130+1 | YFCC-ECM 230+1 | YFCC-ECM 330+1 | |--|--------|---------|----------------|----------------|----------------| | | | max 10v | 1.53 | 3.12 | 3.71 | | Total cooling capacity 4 Pipes [kW] | (1) | med 5v | 1.17 | 2.29 | 2.76 | | | | min 1v | 0.81 | 1.45 | 1.86 | | | | max | 1.21 | 2.37 | 2.79 | | Sensible cooling capacity 4 Pipes [kW] | (1) | med | 0.90 | 1.71 | 2.04 | | | | min | 0.61 | 1.06 | 1.36 | | | | max | 6.5 | 12.6 | 19.8 | | Pressure drop in cooling 4 pipes [kPa] | (1) | med | 4 | 7.3 | 11.7 | | | | min | 2.1 | 3.2 | 5.8 | | | | max | 1.33 | 2.64 | 3.19 | | Heating capacity 4 pipes [kW] | (3) | med | 1.04 | 2.02 | 2.48 | | | | min | 0.76 | 1.38 | 1.79 | | | | max | 3.1 | 2.5 | 4.1 | | Pressure drop in heating 4 pipes [kPa] | (3) | med | 2.0 | 1.6 | 2.7 | | | | min | 1.2 | 0.8 | 1.5 | | | | max | 295 | 540 | 620 | | Air flow [m3/h] | | med | 205 | 370 | 430 | | | | min | 130 | 215 | 275 | | | | max | 55 | 56 | 58 | | Sound power level [dB(A)] | | med | 46 | 46 | 48 | | | | min | 35 | 34 | 36 | | | | max | 46 | 47 | 49 | | Sound pressure level [dB(A)] | (4) | med | 37 | 37 | 39 | | | | min | 26 | 25 | 27 | | Power supply [V-ph-Hz] | | | | 230V/1ph/50Hz | | | Power input [W] | | max | 29 | 37 | 42 | | Absorbed current [A] | | max | 0.24 | 0.29 | 0.35 | | | Height | mm | 309 | 309 | 309 | | Dimensions | Width | mm | 592 | 592 | 592 | | | Depth | mm | 592 | 970 | 1 192 | Manufacturer reserves the rights to change specifications without prior notice. ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C (2) Room temperature 20°C - Water temperature: 45/40 °C (3) Room temperature 20°C - Water inlet temperature: 65/55°C (4) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 # Options & Accessories YFCC / YFCC-ECM ### Compatibility table / Codes | compatibility tubic / codes | I | I | | | T | | | | |---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--| | Model with AC motor | YFCC 130 | YFCC 140 | YFCC 230 | YFCC 240 | YFCC 330 | YFCC 340 | | | | 2 pipe system Cassette YFCC 4 pipe system (+1) | 0064001K
0064021K | 0064011K
0064031K | 0064002K
0064022K | 0064012K
0064032K | 0064003K
0064023K | 0064013K
0064033K | | | | 4 pipe system (+1)
4 pipe system (+2) | 0064021K
0064041K | - UU04U31K | 0064042K | - UU04U32K | 0064023K
0064043K | 0004033K
- | | | | Model with ECM motor | 000 10 1210 | | 000 10 1210 | | 000 10 1010 | | | | | 2 pipe system | 0064201K | 0064211K | 0064202K | 0064212K | 0064203K | 0064213K | | | | Cassette YFCC-ECM 4 pipe system (+1) | 0064221K | 0064231K | 0064222K | 0064232K | 0064223K | 0064233K | | | | 4 pipe system (+2) | 0064241K | - | 0064242K | - | 0064243K | = | | | | Options (Factory fitted) | I | | 6 | C | | | | | | Right hand connection | | | Contact John | nson Controls | | | | | | Valves (220V On/Off) (factory fitted) Kit 3 way valve size 1-5 mounted MBVM-JC 1-5 V.220 (YFCC size 1-2) | I | 006 | 6561 | | 1 | | | | | Kit 3 way valve size 1-5 mounted MBVM-JC 1-5 v.220 (YFCC size 1-2) | | 900 | - | | 9060 | 0471 | | | | Kit 3 way valve additional battery size 1-9 mounted ABVM-JC 1-7 V.220 | | | 906 | 0472 | | - | | | | (YFCC 4 pipes all sizes) | | | | 5-17-2 | | | | | | Kit 2 way valve size 1-5 and additional battery mounted V2M-JC 1-5 V.220 (YFCC size 1-2) | | 906 | 0476 | | | - | | | | Kit 2 way valve size 6-9 primary battery mounted V2M-JC 6-9 V.220 | | | _ | | 9060 | 0477 | | | | (YFCC size 3) | | | | | 3000 | 5-177 | | | | Kit 2 way valve all sizes 4 pipes to be used for the additional battery not mounted V2L-JC 1-5 V.220 | | | 9060 | 0476 | | | | | | Şimplified kit for 3 way valve for ÇD version fitted | | 906 | 6571 | | | _ | | | | (sizes 1-5) VSDM-JC G1-5 V.220 (YFCC size 1-2) | | 300 | | | | | | | | Simplified kit for 3 way valve for CD version fitted (sizes 6-9) VSDM-JC G6-9 V.220 (YFCC size 3) | | | - | | 9060 |)484 | | | | Simplified kit for 3 way valve for CD version fitted - | | | 906 | 0483 | | | | | | additional battery (all sizes) VSAM-JC G1-9 V.220 (YFCC all sizes) | | | 3000 | 0-103 | | | | | | 3 way double valve kit for 4 tube installation and single coil + kit fitted on the unit (YFCC all sizes) | | | 9066 | 572W | | | | | | 2 way DN 10 balance for main coil + kit fitted on the unit (YFCC size 1) | | 6660 | | | _ | | | | | 2 way DN 15 balance for main coil + kit fitted on the unit (YFCC sizes 2-3) | | - | 000 | | 6661 | | | | | 2 way DN 10 balance for additional coil + kit fitted on the unit (all sizes) Accessories (supplied loose) | | | 906 | 6663 | | | | | | Valves 220V On/Off (supplied loose) | | | | | | | | | | Kit 3 way valve size 1–5 not mounted MBVL-JC 1–5 V.220 (YFCC size 1–2) | | 906 | 6560 | | | | | | | Kit 3 way valve size 6-9 not mounted MBVL-JC 6-9 V.220 (YFCC size 3) | | | - | | 9060 | 0474 | | | | Kit 3 way valve additional battery size 1–9 not mounted ABVL–JC 1–7 | | | 906 | 0475
 | | | | | V.220 (YFCC all sizes) Kit 2 way valve size 1-5 and additional battery not mounted V2L-JC 1-5 | | | | | | | | | | V.220 (YFCC size 1-2) | | 906 | 0478 | | | - | | | | Kit 2 way valve size 6-9 primary battery not mounted V2L-JC 4-7 V.220 | | | 9060 | 0479 | | | | | | (YFCC size 3) Kit 2 way valve size 1-5 and to be used for the additional battery not | | | | | | | | | | mounted V2L-JC 1-5 V.220 | | | 9060 | 0478 | | | | | | Simplified kit for 3 way valve for CD version not fitted (sizes 1-5) VSDS-JC G1-5 V.220 (YFCC size 1-2) | | 906 | - | | | | | | | Simplified kit for 3 way valve for CD version not fitted | | | | | | | | | | (sizes 6-9) VSDS-JC G6-9 V.220 (YFCC size 3) | | | 9060481 | | | | | | | Simplified kit for 3 way valve for CD version not fitted – additional battery (all sizes) VSAS-JC G1-9 V.220 (YFCC all sizes) | 9060480 | | | | | | | | | 3 way double valve kit for 4 tube installation and single coil + | | | | | | | | | | kit not fitted on the unit (YFCC all sizes) | | | 9066 | 562W | | | | | | 2 way DN 10 balance for main coil + kit not fitted (YFCC size 1) | | 6650 | | | - | | | | | 2 way DN 15 balance for main coil + kit not fitted (YFCC sizes 2-3) 2 way DN 10 balance for additional coil + kit not fitted (all sizes) | | - | 906 | 906
6653 | 6651 | | | | | Other type of valves | | | | nson Controls | | | | | | Accessories | | | | | | | | | | Electrical heater and relays fitted on the unit - 350 W - size 1 - BEL-CCN | 906- | 4051 | | - | | | | | | 1/4 (note 1) Electrical heater and relays fitted on the unit - 550 W - size 1 - BEL-CCN | | | | | | | | | | 1/6 (note 1) | 906- | 4031 | | - | | - | | | | Electrical heater and relays fitted on the unit - 700 W - size 2 - BEL-CCN | | - | 9064 | 4052 | | | | | | 2/7 (note 1) Electrical heater and relays fitted on the unit - 1150 W - size 1 - BEL-CCN | | | | | | | | | | 2/12 (note 1) | | - | 9064 | 4032 | | - | | | | Electrical heater and relays fitted on the unit - 900 W - size 3 - BEL-CCN 3/9 (note 1) | | - | | - | 9064 | 1053 | | | | | | | | | | | | | | Flectrical heater, and relays fitted on the unit – 1/100 W – size 1 – REI –CCN | | | 9064033 | | | | | | | Electrical heater and relays fitted on the unit – 1400 W – size 1 – BEL–CCN 3/14 (note 1) | | - | | 6060402 | | | | | | 3/14 (note 1) Horizontal auxiliary condensate tray HC ACTH-SX (for units with LEFT | | - | 6060 | 0402 | | | | | | 3/14 (note 1) Horizontal auxiliary condensate tray HC ACTH-SX (for units with LEFT hydraulic connectons | | - | | | | | | | | 3/14 (note 1) Horizontal auxiliary condensate tray HC ACTH–SX (for units with LEFT hydraulic connectons Horizontal auxiliary condensate tray HC ACTH–DX (for units with RIGHT hydraulic connections) | | - | 6060 | 0403 | | | | | | 3/14 (note 1) Horizontal auxiliary condensate tray HC ACTH-SX (for units with LEFT hydraulic connectons Horizontal auxiliary condensate tray HC ACTH-DX (for units with RIGHT hydraulic connections) Condensate drain pipe SCR | | - | 6060 | 0403
0420 | | | | | | 3/14 (note 1) Horizontal auxiliary condensate tray HC ACTH-SX (for units with LEFT hydraulic connectons Horizontal auxiliary condensate tray HC ACTH-DX (for units with RIGHT hydraulic connections) Condensate drain pipe SCR Drain condensate pump not fitted PCC-S | | - | 6060
6060
9064 | 0403
0420
4010 | | | | | | 3/14 (note 1) Horizontal auxiliary condensate tray HC ACTH-SX (for units with LEFT hydraulic connectons Horizontal auxiliary condensate tray HC ACTH-DX (for units with RIGHT hydraulic connections) Condensate drain pipe SCR | | - | 6060
906-
906- | 0403
0420 | | | | | ### Compatibility table / Codes | CONTROLS for YFCC (AC versions) | YFCC 130 | YFCC 140 | YFCC 230 | YFCC 240 | YFCC 330 | YFCC 340 | | |---|-----------------|-------------------|-------------|----------|----------|----------|--| | Remote three speed control JWC-3V (1) (4) | | | 906 | 6642 | | | | | Remote three speed control + electronic thermostat and manual S/W switch JWC-T (2) | | | 9066 | 5330K | | | | | Remote three speed control + electronic thermostat and centralized/
manual S/W switch JWC-TQR (2) (3) | | | 906 | 6632K | | | | | Automatic speed control with electronic thermostat and S/W switch – JWC-AU (to be used with JPF-AU and JP-AU only) (2) (3) | | | 906 | 6331E | | | | | Automatic speed control with electronic thermostat to be mounted in the light wall box WM-503 | 9066676 | | | | | | | | Electromechanical thermostat T2T (4) (5) | | | 906 | 60174 | | | | | Power unit JPF-AU for JWC-AU and JTM-B remote controls, fitted on the unit | | | 906 | 66641 | | | | | Power unit JP-AU for JWC-AU and JTM-B remote controls, not fitted on the unit | | | 906 | 6640 | | | | | Power unit UP-503 for WM-503 remote control only, not fitted on the unit | | | 906 | 66677 | | | | | Control accessories for all versions (supplied with separa | ate packaging) | | | | | | | | Low temperature cut-out for control JWC-T | | | 905 | 3048 | | | | | Low temperature cut-out for controls JWC-TQR, WM-503 and JP-AU power unit | | | 302 | 1090 | | | | | T2 sensor to be used as Change-over for JP-AU power unit | | | 902 | 5310 | | | | | Change-over 15-25 for control JWC-TQR | | | 905 | 3049 | | | | | Receiver SEL2M | | | 907 | 9109 | | | | | CONTROLS for YFCC (AC versions) + MB | | | | | | | | | Mounted power unit MB-M | | | 906 | 66332 | | | | | Not mounted power unit MB-S | 9066333 | | | | | | | | IR remote control and not mounted IR receiver RS-RT03 | 9066337 | | | | | | | | Not mounted IR receiver RS | 9066338 | | | | | | | | IR remote control RT03 | 3021203 | | | | | | | | Wall control JTM-B | 9066331E | | | | | | | | Multifunction control PSM-DI | | | 302 | 1293 | | | | | T2 sensor (to be used as change over or min.temp. sensor) T2 | | | 902 | 5310 | | | | | CONTROLS for YFCC-ECM | | | | | | | | | Automatic speed control with electronic thermostat and S/W switch – JWC-AU (to be used with JPF-AU and JP-AU only) (2) (3) | | | 906 | 6632K | | | | | Automatic remote control with electronic thermostat, S/W switch and liquid crystall display JTM-B (to be used with JPF-AU and JP-AU only) (2) (3) | | | 906 | 6331E | | | | | WM-S-ECM Continuous fan speed control with electronic thermostat, summer/winter switch and LCD display | | | 906 | 6644 | | | | | Power unit JPF-AU for JWC-AU and JTM-B remote controls, fitted on the unit | | | 906 | 66641 | | | | | Power unit JP-AU for JWC-AU and JTM-B remote controls, not fitted on the unit | | | 906 | 6640 | | | | | CONTROLS for YFCC-ECM + MB | | | | | | | | | Mounted power unit MB-M | | | 906 | 66332 | | | | | Not mounted power unit MB-S | | | 906 | 66333 | | | | | IR remote control and not mounted IR receiver RS-RT03 | | | 906 | 66337 | | | | | Not mounted IR receiver RS | | | 906 | 6338 | | | | | IR remote control RT03 | | | 302 | 1203 | | | | | Wall control JTM-B | 9066331E | | | | | | | | Multifunction control PSM-DI | | | 302 | 1293 | | | | | T2 sensor (to be used as change over or min.temp. sensor) T2 | | | 902 | 5310 | | | | | Management system for a network of fan coils with MB | electronic boar | d (std. Motor and | d EC motor) | | | | | | Hardware / software supervisory system Net | | | | 9118 | | | | | Router-S for NET (default) or for BMS systems no provided by York | | | | 1290 | | | | | Relay output board SIOS | | | 302 | 1292 | | | | | WARNING | | | | | | | | WARNING (1) Not to be used with valves. (2) Can be used with valves and/or low temperature cut-out. (3) Can be used with Change Over. (4) Not suitable with -E electric heater. (5) Not to be used with low temperature cut-out. Note 1. Electric heaters must be factory supplied only - in ECM range the above controls can control the electric heater only if there is no hot water supply to the exchanger. ### Air Throw # YHVP & YHVP-ECM Hydro High Wall 2 pipe system A range from 1.17 to 3.81 kW ### JWC-T. Wired Control Remote three speeds controller, electronic thermostat and Summer/Winter switch **JWC-AU. Wired Control** Automatic JWC-T **Electronic Infrared Control** **TUC03+ Terminal unit controller**BacNET and N2 Metasys network compatible ### **Features** - Available with standard AC motors or low energy EC motors - · Wired control or infrared control - Automatic air sweep (-T and -MB variants only) - · Choice of 2 or 3 way valves fitted - · Condensate collection tray - · Air filter included - · Heat exchange coil 2 Way Valve ON/OFF with thermoelectric actuator. Suitable for the connection with ${\cal O}$ 12 mm pipes ### Wired control (YHVP) - · 4 operation modes (Cool/Heat/Auto/Fan) - · Room temperature and setting - Fan speed selector (Auto, low, medium and high) ### Infrared control (YHVP-T) - Wireless - 5 operation modes (Cool/Heat/Auto/Dry/Fan) - · Sleep Mode - · Room Temperature setting - Fan speed selection - Timer - · Air flow direction setting - LCD display Note: model shown is -T variant with automatic air sweep function # YHVP & YHVP-ECM Hydro High Wall 1.17 to 3.81 kW ### Technical features | Model | | | YHVP 1 | YHVP 2 | YHVP 3 | YHVP 4 | |--------------------------------|--------|-----|--------|--------|---------|--------| | | | max | 1.85 | 2.16 | 3.00 | 3.76 | | Total cooling capacity [kW] | (1) | med | 1.49 | 1.82 | 2.30 | 3.23 | | | | min | 1.23 | 1.42 | 1.87 | 2.60 | | | | max | 1.44 | 1.73 | 2.24 | 2.93 | | Sensible cooling capacity [kW] | (1) | med | 1.13 | 1.41 | 1.67 | 2.44 | | | | min | 0.91 | 1.06 | 1.33 | 1.91 | | | | max | 2.18 | 2.62 | 3.23 | 4.28 | | Heating capacity [kW] | (2) | med | 1.68 | 2.13 | 2.37 | 3.53 | | | | min | 1.34 | 1.58 | 1.89 | 2.73 | | | | max | 375 | 480 | 545 | 790 | | Air flow [m3/h] | | med | 270 | 365 | 375 | 610 | | | | min | 205 | 250 | 280 | 440 | | | | max | 48 | 53 | 48 | 57 | | Sound power level [dB(A)] | | med | 41 | 47 | 40 | 51 | | | | min | 35 | 39 | 35 | 43 | | | | max |
39 | 44 | 39 | 48 | | Sound pressure level [dB(A)] | (3) | med | 32 | 38 | 31 | 42 | | | | min | 26 | 30 | 26 | 34 | | Power supply [V-ph-Hz] | | | | 230V/1 | ph/50Hz | | | Power input [W] | | max | 30 | 32 | 46 | 48 | | Absorbed current [A] | | max | 0.16 | 0.16 | 0.23 | 0.23 | | | Height | mm | 322 | 322 | 322 | 322 | | Dimensions | Width | mm | 880 | 880 | 1 185 | 1 185 | | | Depth | mm | 212 | 212 | 212 | 212 | ### Technical features | Model | | | YHVP-ECM 1 | YHVP-ECM 2 | YHVP-ECM 3 | YHVP-ECM 4 | |--------------------------------|--------|---------|------------|------------|------------|------------| | | | max 10v | 1.98 | 2.24 | 3.27 | 3.72 | | Total cooling capacity [kW] | (1) | med 5v | 1.57 | 1.86 | 2.52 | 3.03 | | | | min 1v | 1.16 | 1.46 | 1.82 | 2.33 | | | | max | 1.56 | 1.81 | 2.48 | 2.89 | | Sensible cooling capacity [kW] | (1) | med | 1.19 | 1.45 | 1.85 | 2.27 | | | | min | 0.85 | 1.09 | 1.30 | 1.69 | | | | max | 2.35 | 2.74 | 3.57 | 4.20 | | Heating capacity [kW] | (2) | med | 1.78 | 2.18 | 2.63 | 3.26 | | | | min | 1.26 | 1.63 | 1.83 | 2.40 | | | | max | 415 | 510 | 620 | 770 | | Air flow [m3/h] | | med | 290 | 375 | 420 | 550 | | | | min | 190 | 260 | 270 | 375 | | | | max | 52 | 55 | 53 | 57 | | Sound power level [dB(A)] | | med | 46 | 47 | 45 | 49 | | | | min | 35 | 40 | 37 | 43 | | | | max | 43 | 46 | 44 | 48 | | Sound pressure level [dB(A)] | (3) | med | 37 | 38 | 36 | 40 | | | | min | 26 | 31 | 28 | 34 | | Power supply [V-ph-Hz] | | | | 230V/1 | ph/50Hz | | | Power input [W] | | max | 15 | 21 | 20 | 30 | | Absorbed current [A] | | max | 0.14 | 0.19 | 0.18 | 0.26 | | | Height | mm | 322 | 322 | 322 | 322 | | Dimensions | Width | mm | 880 | 880 | 1 185 | 1 185 | | | Depth | mm | 212 | 212 | 212 | 212 | Manufacturer reserves the rights to change specifications without prior notice. ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. - Water temperature 7/12 °C (2) Room temperature 20°C - Water inlet temperature: 45/40°C. (3) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 ⁽¹⁾ Room temperature 27°C d.b., 19°C w.b. – Water temperature 7/12 °C (2) Room temperature 20°C – Water inlet temperature: 45/40°C. (3) The sound pressure levels are 9 dB(A) lower than the sound power levels and apply to the reverberant field of a 100 m3 room and a reverberation time of 0.5 sec. * Water flow values as Cooling, accordingly to the EUROVENT standards and UNI ENV 1397 ### Codes high wall fan coil units YHVP | Codes night wall fan coll units | THVP | | | | | | | | |--|----------------------------|----------------|----------------|----------------|--|--|--|--| | Unit without IR control without valve | YHVP 1 | YHVP 2 | YHVP 3 | YHVP 4 | | | | | | Unit codes | 0025001K | 0025002K | 0025003K | 0025004K | | | | | | Unit without IR control with 2 way valve | YHVP-2V 1 | YHVP-2V 2 | YHVP-2V 3 | YHVP-2V 4 | | | | | | Unit codes | 0025101K | 0025102K | 0025103K | 0025104K | | | | | | Unit without IR control with 3 way valve | YHVP-3V 1 | YHVP-3V 2 | YHVP-3V 3 | YHVP-3V 4 | | | | | | Unit codes | 0025201K | 0025202K | 0025203K | 0025204K | | | | | | Unit with IR control without valve | YHVP-T 1 | YHVP-T 2 | YHVP-T 3 | YHVP-T 4 | | | | | | Unit codes | 0025021K | 0025022K | 0025023K | 0025024K | | | | | | Unit with IR control with 2 way valve | YHVP-T-2V 1 | YHVP-T-2V 2 | YHVP-T-2V 3 | YHVP-T-2V 4 | | | | | | Unit codes | 0025121K | 0025122K | 0025123K | 0025124K | | | | | | Unit with IR control with 3 way valve | YHVP-T-3V 1 | YHVP-T-3V 2 | YHVP-T-3V 3 | YHVP-T-3V 4 | | | | | | Unit codes | 0025221K | 0025222K | 0025223K | 0025224K | | | | | | Unit with MB board without valve | YHVP-MB 1 | YHVP-MB 2 | YHVP-MB 3 | YHVP-MB 4 | | | | | | Unit codes | 0025011K | 0025012K | 0025013K | 0025014K | | | | | | Unit with MB board with 2 way valve | YHVP-MB-2V 1 | YHVP-MB-2V 2 | YHVP-MB-2V 3 | YHVP-MB-2V 4 | | | | | | Unit codes | 0025111K | 0025112K | 0025113K | 0025114K | | | | | | Unit with MB board with 3 way valve | YHVP-MB-3V 1 | YHVP-MB-3V 2 | YHVP-MB-3V 3 | YHVP-MB-3V 4 | | | | | | Unit codes | 0025211K | 0025212K | 0025213K | 0025214K | | | | | | Unit without IR control without valve | YHVP-E 1 | YHVP-E 2 | YHVP-E 3 | YHVP-E 4 | | | | | | with electrical coil Unit codes | 0025031K | 0025032K | 0025033K | 0025034K | | | | | | Unit without IR control with 2 way valve | | | | | | | | | | with electrical coil | YHVP-E-2V 1 | YHVP-E-2V 2 | YHVP-E-2V 3 | YHVP-E-2V 4 | | | | | | Unit codes | 0025131K | 0025132K | 0025133K | 0025134K | | | | | | Unit without IR control with 3 way valve with electrical coil | YHVP-E-3V 1 | YHVP-E-3V 2 | YHVP-E-3V 3 | YHVP-E-3V 4 | | | | | | Unit codes | 0025231K | 0025232K | 0025233K | 0025234K | | | | | | Unit with IR control without valve | | | | | | | | | | with electrical coil | YHVP-T-E 1 | YHVP-T-E 2 | YHVP-T-E 3 | YHVP-T-E 4 | | | | | | Unit codes | 0025041K | 0025042K | 0025043K | 0025044K | | | | | | Unit with IR control with 2 way valve with
electrical coil | YHVP-T-E-2V 1 | YHVP-T-E-2V 2 | YHVP-T-E-2V 3 | YHVP-T-E-2V 4 | | | | | | Unit codes | 0025141K | 0025142K | 0025143K | 0025144K | | | | | | Unit with IR control with 3 way valve with electrical coil | YHVP-T-E-3V 1 | YHVP-T-E-3V 2 | YHVP-T-E-3V 3 | YHVP-T-E-3V 4 | | | | | | Unit codes | 0025241K | 0025242K | 0025243K | 0025244K | | | | | | Unit with MB board without valve with electrical coil | YHVP-MB-E 1 | YHVP-MB-E 2 | YHVP-MB-E 3 | YHVP-MB-E 4 | | | | | | Unit codes | 0025051K | 0025052K | 0025053K | 0025054K | | | | | | Unit with MB board with 2 way valve with electrical coil | YHVP-MB-E-2V 1 | YHVP-MB-E-2V 2 | YHVP-MB-E-2V 3 | YHVP-MB-E-2V 4 | | | | | | Unit codes | 0025151K | 0025152K | 0025153K | 0025154K | | | | | | Unit with MB board with 3 way valve with electrical coil | YHVP-MB-E-3V 1 | YHVP-MB-E-3V 2 | YHVP-MB-E-3V 3 | YHVP-MB-E-3V 4 | | | | | | Unit codes | 0025251K | 0025252K | 0025253K | 0025254K | | | | | | Controls | JWM-3V Wall control | | 9066 | | | | | | | | JWC-T Wall control | | 9066 | | | | | | | | JWC-TQR Wall control T2T Wall control | | 9066 | | | | | | | | JTM-B Wall control (to be used with MB board only) | | | 331E | | | | | | | RTO3 infra-red remote control with receiver supplied with | | | | | | | | | | separate packaging (to be used with MB board only) | | 9025 | 3U1 | | | | | | | RTO3 infra-red remote control supplied with separate packaging (to be used with MB board only) | | 3021 | 1203 | | | | | | | Receiver for RT03 infra-red remote control supplied with | | 0005 | 200 | | | | | | | separate packaging (to be used with MB board only) | | 9025 | 2000 | | | | | | | PSM-DI Multifunction control (to be used with MB board only) | 3021293 | | | | | | | | | SEL-CVP Speed switch for controls: JWC-T, JWC-TQR and TMO-503-SV2. | 9025302 | | | | | | | | | Electronic control accessories | | | | | | | | | | NTC low temperature cut-out thermostat for control JWC-TQR | | 3021 | .090 | | | | | | | TMM low temperature cut-out thermostat for control JWC-T | -T 9053048 | | | | | | | | | Change-Over CH 15-25 for control JWC-TQR | | 9053 | 3049 | | | | | | | T2 Sensor (to be used as change-over or low temperature cut-out - for MB only | | 9025 | 5310 | | | | | | | Management system for a network of fan coil | s with MB electronic board | l | | | | | | | | | | | 110 | | | | | | | Hardware / software supervisory system Net | 9079118 | | | | | | | | | Hardware / software supervisory system Net Router-S for NET (default) or for BMS systems no provided | | 9079 | | | | | | | | Hardware / software supervisory system Net | | | 290 | | | | | | ### Codes high wall fan coil units YHVP-ECM | Unit without IR control without valve | YHVP-ECM 1 | YHVP-ECM 2 | YHVP-ECM 3 | YHVP-ECM 4 | | | | | |--|-----------------------------|--------------------|--------------------|--------------------|--|--|--|--| | Unit codes | 0025501K | 0025502K | 0025503K | 0025504K | | | | | | Unit without IR control with 2 way valve | YHVP-ECM-2V 1 | YHVP-ECM-2V 2 | YHVP-ECM-2V 3 | YHVP-ECM-2V 4 | | | | | | Unit codes | 0025601K | 0025602K | 0025603K | 0025604K | | | | | | Unit without IR control with 3 way valve | YHVP-ECM-3V 1 | YHVP-ECM-3V 2 | YHVP-ECM-3V 3 | YHVP-ECM-3V 4 | | | | | | Unit codes | 0025701K | 0025702K | 0025703K | 0025704K | | | | | | Unit with IR control without valve | YHVP-ECM-T 1 | YHVP-ECM-T 2 | YHVP-ECM-T 3 | YHVP-ECM-T 4 | | | | | | Unit codes | 0025521K | 0025522K | 0025523K | 0025524K | | | | | | Unit with IR control with 2 way valve | YHVP-ECM-T-2V 1 | YHVP-ECM-T-2V 2 | YHVP-ECM-T-2V 3 | YHVP-ECM-T-2V 4 | | | | | | Unit codes | 0025621K | 0025622K | 0025623K | 0025624K | | | | | | Unit with IR control with 3 way valve | YHVP-ECM-T-3V 1 | YHVP-ECM-T-3V 2 | YHVP-ECM-T-3V 3 | YHVP-ECM-T-3V 4 | | | | | | Unit codes | 0025721K | 0025722K | 0025723K | 0025724K | | | | | | Unit with MB board without valve | YHVP-ECM-MB 1 | YHVP-ECM-MB 2 | YHVP-ECM-MB 3 | YHVP-ECM-MB 4 | | | | | | Unit codes | 0025511K | 0025512K | 0025513K | 0025514K | | | | | | Unit with MB board with 2 way valve | YHVP-ECM-MB-2V 1 | YHVP-ECM-MB-2V 2 | YHVP-ECM-MB-2V 3 | YHVP-ECM-MB-2V 4 | | | | | | Unit codes | 0025611K | 0025612K | 0025613K | 0025614K | | | | | | Unit with MB board with 3 way valve | YHVP-ECM-MB-3V 1 | YHVP-ECM-MB-3V 2 | YHVP-ECM-MB-3V 3 | YHVP-ECM-MB-3V 4 | | | | | | Unit codes | 0025711K | 0025712K | 0025713K | 0025714K | | | | | | Unit without IR control without valve with electrical coil | YHVP-ECM-E 1 | YHVP-ECM-E 2 | YHVP-ECM-E 3 | YHVP-ECM-E 4 | | | | | | Unit codes | 0025531K | 0025532K | 0025533K |
0025534K | | | | | | Unit without IR control with 2 way valve with electrical coil | YHVP-ECM-E-2V 1 | YHVP-ECM-E-2V 2 | YHVP-ECM-E-2V 3 | YHVP-ECM-E-2V 4 | | | | | | Unit codes | 0025631K | 0025632K | 0025633K | 0025634K | | | | | | Unit without IR control with 3 way valve with electrical coil | YHVP-ECM-E-3V 1 | YHVP-ECM-E-3V 2 | YHVP-ECM-E-3V 3 | YHVP-ECM-E-3V 4 | | | | | | Unit codes | 0025731K | 0025732K | 0025733K | 0025734K | | | | | | Unit with IR control without valve with electrical coil | YHVP-ECM-T-E 1 | YHVP-ECM-T-E 2 | YHVP-ECM-T-E 3 | YHVP-ECM-T-E 4 | | | | | | Unit codes | 0025541K | 0025542K | 0025543K | 0025544K | | | | | | Unit with IR control with 2 way valve with electrical coil | YHVP-ECM-T-E-2V 1 | YHVP-ECM-T-E-2V 2 | YHVP-ECM-T-E-2V 3 | YHVP-ECM-T-E-2V 4 | | | | | | Unit codes | 0025641K | 0025642K | 0025643K | 0025644K | | | | | | Unit with IR control with 3 way valve with electrical coil | YHVP-ECM-T-E-3V 1 | YHVP-ECM-T-E-3V 2 | YHVP-ECM-T-E-3V 3 | YHVP-ECM-T-E-3V 4 | | | | | | Unit codes | 0025741K | 0025742K | 0025743K | 0025744K | | | | | | Unit with MB board without valve with electrical coil | YHVP-ECM-MB-E 1 | YHVP-ECM-MB-E 2 | YHVP-ECM-MB-E 3 | YHVP-ECM-MB-E 4 | | | | | | Unit codes | 0025551K | 0025552K | 0025553K | 0025554K | | | | | | Unit with MB board with 2 way valve with electrical coil | YHVP-ECM-MB-E-2V 1 | YHVP-ECM-MB-E-2V 2 | YHVP-ECM-MB-E-2V 3 | YHVP-ECM-MB-E-2V 4 | | | | | | Unit codes | 0025651K | 0025652K | 0025653K | 0025654K | | | | | | Unit with MB board with 3 way valve with electrical coil | YHVP-ECM-MB-E-3V 1 | YHVP-ECM-MB-E-3V 2 | YHVP-ECM-MB-E-3V 3 | YHVP-ECM-MB-E-3V 4 | | | | | | Unit codes | 0025751K | 0025752K | 0025753K | 0025754K | | | | | | Controls | | | | | | | | | | WM-S-ECM continuous fan speed control with S/W switch and liquid crystall display | | 9066 | 5644 | | | | | | | JTM-B Wall control (to be used with MB board only) | | 9066 | 331E | | | | | | | RT03 infra-red remote control with receiver supplied with separate packaging (to be used with MB board only) | | 9025 | 5301 | | | | | | | RTO3 infra-red remote control supplied with separate packaging (to be used with MB board only) | | 3021 | 1203 | | | | | | | Receiver for RT03 infra-red remote control supplied with separate packaging (to be used with MB board only) | | 9025 | 5300 | | | | | | | PSM-DI Multifunction control (to be used with MB board only) | oard only) 3021293 | | | | | | | | | Electronic control accessories | | | | | | | | | | T2 Sensor (to be used as change-over or low temperature cut-out - for MB only | | 9025 | 5310 | | | | | | | Management system for a network of fan coi | Is with MB electronic board | l | | | | | | | | management system for a network of fair col | | | | | | | | | | Hardware / software supervisory system Net | 9079118 | | | | | | | | | | | 9079 | | | | | | | # YEPR Heat Recovery Units A complete range from 300 up to 2,600 m³/h ### Introduction The high-efficiency heat recovery units of the **YEPR** series have been designed to ensure energy savings in ventilation systems of public and private premises such as bars, restaurants, offices, shops, etc., making it possible to recover heat from the exhaust air and transferring it to the air released into the room. The heat exchange between the exhaust air and the intake air takes place through a static heat exchanger with countercurrent flow, sized to obtain a heat recovery up to 94%. The **YEPR** series includes 4 sizes suitable for horizontal installation and covers a range of flow rates from 300 to 2600 m3/h. The units are available both in the version for installation on ceilings and floors. ### Construction features The **YEPR** are supplied in 2 versions: - for ceiling installation (YEPR 1-C, YEPR 2-C, YEPR 3-C, YEPR 4-C) - for floor installation (YEPR 1-F, YEPR 2-F, YEPR 3-F, YEPR 4-F) and they are equipped with centrifugal fans, featuring backward-inclined blades, and a continuous modulation electronic motor which ensure variable flow control, so as to reduce power consumption to the minimum necessary. The YEPR units are ERP 2018 and therefore comply with the regulatory requirements of the European Ecodesign Directive (EU Regulation 1253/14). The checks concern both the energy performance relating to heat recovery and the intrinsic energy consumption parameter SFPint in the nominal conditions declared by the manufacturer. # YEPR Heat Recovery Units YEPR 1 to 4 ### Technical features | Model | | YEPR 1 | YEPR 2 | YEPR 3 | YEPR 4 | |---|------|------------------|------------------|------------------|------------------| | Marian and and active air flavorate | m³/h | 720 | 1150 | 1700 | 2600 | | Maximum supply and return air flow rate | m³/h | 0.20 | 0.32 | 0.47 | 0.72 | | Supply and return rated available static pressure | Pa | 170 | 220 | 250 | 250 | | Minimum supply and return air flow rate | m³/h | 270 | 300 | 600 | 690 | | Thermal efficiency EU regulation 1253/14 (1) | % | 80 | 80 | 80 | 85 | | Total thermal output recovered (1) | kW | 3.9 | 6.2 | 9.1 | 14.8 | | Maximum recovery efficiency (2) | % | 90 | 90 | 90 | 94 | | Total thermal output recovered (2) | kW | 6.5 | 10.5 | 15.4 | 24.5 | | Total number of fans | - | 2 | 2 | 2 | 2 | | Rated absorbed electrical power (3) | W | 330 | 770 | 1060 | 1460 | | Maximum total absorbed current (3) | Α | 2.8 | 3.4 | 4.7 | 6.5 | | Unit power supply (3) | V-Ph | 230-1 + N / 50Hz | | Protection rating with machine installed | - | IP20 | IP20 | IP20 | IP20 | | Unit weight | kg | 90 | 140 | 170 | 320 | ¹⁾ Air conditions: EAT = 5° C and t_i = 25° C, no condensate ### Overall dimensions of the packaged unit | | | | | | 1 | |------------|------|--------|--------|--------|--------| | Model | | YEPR 1 | YEPR 2 | YEPR 3 | YEPR 4 | | Dimensions | D mm | 469 | 510 | 595 | 735 | | | E mm | 1845 | 1845 | 2245 | 2345 | | | F mm | 1030 | 1030 | 1430 | 1880 | | Weight | kg | 119 | 165 | 198 | 370 | ### Thermal performances - Internal conditions: ti = 20°C - RHi = 50% | | | | EAT: 10°0 | : | | EAT: 5°C | | | EAT: 0°C | | | EAT: -5°C | : | E | AT: -10° | С | |---------|------|------|-----------|------|-------|----------|------|-------|----------|------|-------|-----------|------|-------|----------|-------| | Model | Q۷ | Ph | εt | mw | | wodei | m3/h | kW | % | kg/h | | | 100 | 0.30 | 90.4 | 0.00 | 0.46 | 90.5 | 0.15 | 0.60 | 91.7 | 0.26 | 0.79 | 94.3 | 0.36 | 0.97 | 96.5 | 0.44 | | | 150 | 0.44 | 88.2 | 0.00 | 0.67 | 88.3 | 0.21 | 0.90 | 89.8 | 0.38 | 1.17 | 92.7 | 0.53 | 1.44 | 95.4 | 0.65 | | YEPR 1 | 300 | 0.85 | 84.6 | 0.00 | 1.28 | 84.7 | 0.42 | 1.74 | 86.4 | 0.72 | 2.26 | 90.0 | 1.03 | 2.81 | 93.2 | 1.25 | | ILPKI | 450 | 1.25 | 82.6 | 0.00 | 1.87 | 82.7 | 0.62 | 2.55 | 84.5 | 1.09 | 3.34 | 88.4 | 1.52 | 4.16 | 91.9 | 1.85 | | | 600 | 1.63 | 81.2 | 0.00 | 2.45 | 81.3 | 0.81 | 3.35 | 83.2 | 1.43 | 4.39 | 87.3 | 2.01 | 5.49 | 90.9 | 2.47 | | | 750 | 2.01 | 80.1 | 0.00 | 3.03 | 80.2 | 0.96 | 4.13 | 82.2 | 1.71 | 5.43 | 86.4 | 2.43 | 6.80 | 90.1 | 3.01 | | | 200 | 0.60 | 89.4 | 0.00 | 0.90 | 89.5 | 0.29 | 1.22 | 90.8 | 0.51 | 1.57 | 93.5 | 0.70 | 1.93 | 96.0 | 0.86 | | | 250 | 0.74 | 88.2 | 0.00 | 1.11 | 88.3 | 0.36 | 1.50 | 89.7 | 0.63 | 1.94 | 92.7 | 0.88 | 2.40 | 95.3 | 1.08 | | YEPR 2 | 500 | 1.42 | 84.6 | 0.00 | 2.13 | 84.7 | 0.69 | 2.90 | 86.4 | 1.20 | 3.77 | 90.0 | 1.72 | 4.69 | 93.2 | 2.08 | | ILFIX Z | 750 | 2.08 | 82.5 | 0.00 | 3.12 | 82.6 | 1.04 | 4.25 | 84.5 | 1.81 | 5.56 | 88.4 | 2.52 | 6.93 | 91.8 | 3.09 | | | 1000 | 2.72 | 81.1 | 0.00 | 4.08 | 81.2 | 1.35 | 5.57 | 83.1 | 2.38 | 7.31 | 87.2 | 3.35 | 9.14 | 90.8 | 4.12 | | | 1250 | 3.35 | 80.0 | 0.00 | 5.04 | 80.1 | 1.68 | 6.88 | 82.1 | 2.85 | 9.04 | 86.3 | 4.05 | 11.32 | 90.0 | 5.00 | | | 300 | 0.89 | 88.4 | 0.00 | 1.34 | 88.5 | 0.43 | 1.81 | 89.9 | 0.76 | 2.34 | 92.9 | 1.06 | 2.88 | 95.5 | 1.31 | | | 400 | 1.17 | 86.9 | 0.00 | 1.75 | 87.0 | 0.56 | 2.38 | 88.5 | 1.00 | 3.08 | 91.8 | 1.37 | 3.81 | 94.6 | 1.69 | | YEPR 3 | 800 | 2.24 | 83.4 | 0.00 | 3.36 | 83.5 | 1.10 | 4.57 | 85.2 | 1.91 | 5.97 | 89.0 | 2.66 | 7.44 | 92.4 | 3.36 | | ILFK 3 | 1200 | 3.27 | 81.4 | 0.00 | 4.92 | 81.5 | 1.64 | 6.71 | 83.4 | 2.88 | 8.79 | 87.4 | 3.90 | 10.99 | 91.0 | 4.97 | | | 1650 | 4.42 | 79.8 | 0.00 | 6.63 | 79.9 | 2.20 | 9.06 | 81.9 | 3.88 | 11.91 | 86.1 | 5.31 | 14.92 | 89.9 | 6.57 | | | 2000 | 5.29 | 78.9 | 0.00 | 7.95 | 79.0 | 2.53 | 10.87 | 81.0 | 4.54 | 14.31 | 85.4 | 6.49 | 17.95 | 89.2 | 8.05 | | | 400 | 1.28 | 95.3 | 0.00 | 1.92 | 95.4 | 0.63 | 2.58 | 96.1 | 1.10 | 3.27 | 97.5 | 1.50 | 3.97 | 98.7 | 1.75 | | | 550 | 1.72 | 93.5 | 0.00 | 2.59 | 93.6 | 0.84 | 3.49 | 94.5 | 1.49 | 4.44 | 96.4 | 1.98 | 5.42 | 98.0 | 2.43 | | YEPR 4 | 1100 | 3.31 | 89.7 | 0.00 | 4.97 | 89.8 | 1.61 | 6.72 | 91.1 | 2.82 | 8.65 | 93.8 | 3.89 | 10.64 | 96.1 | 4.74 | | ILIK 4 | 1700 | 4.98 | 87.4 | 0.00 | 7.48 | 87.5 | 2.45 | 10.14 | 89.0 | 4.34 | 13.13 | 92.1 | 5.87 | 16.23 | 94.9 | 7.25 | | | 2300 | 6.62 | 85.8 | 0.00 | 9.94 | 85.9 | 3.22 | 13.50 | 87.5 | 5.77 | 17.53 | 90.9 | 7.90 | 21.74 | 93.9 | 9.83 | | | 2900 | 8.23 | 84.6 | 0.00 | 12.36 | 84.7 | 4.02 | 16.81 | 86.4 | 6.97 | 21.88 | 90.0 | 9.99 | 27.19 | 93.2 | 12.09 | \mathbf{t}_i = Internal air temperature RH_i = Internal relative humidity EAT = External air temperature Q_v = Intake air flow rate Q_r = Return air flow rate P_h = Thermal recovery on the intake flow $\mathbf{\mathcal{E}}_{t}$ = Recovery efficiency with balanced flow rates $\mathbf{m_w}$ = Condensate production **b** = Unbalance percentage \mathcal{E}_{t}^{*} = Recovery efficiency with unbalanced flow rates \mathbf{F}_{T} = Correction coefficient according to EAT variation F_Q = Correction coefficient according to Qv variation $$\varepsilon_{t} = \frac{2980 P_{h}}{Q_{v} (t_{i} - TAE)}$$ $b = Q_r/Q_v$ $\mathcal{E}_t^* = \mathcal{E}_t b F_r F_Q$ ²⁾ Air conditions: EAT = -10°C and t_i = 20°C, RHi 50% RH # YORK® Close Control units Maintaining
a constant temperature, purity and humidity of air is essential for ensuring a stable environment for critical electronic and computer equipment, this is why there is the need for close control air conditioning. Unlike comfort air conditioning, close control systems must operate constantly 24/7 requiring high reliability and minimal power consumption. Johnson Controls knows that no two close control requirements are the same, this is why the YORK® range of custom close control units offers quiet, compact and energy efficient equipment that can be configured to needed requirements. ### An extensive offering - cooling capacities of up to 160kw (chilled water) or 94kw (direct expansion) with optional free cooling models. Up flow or down flow configuration, either as self-contained packaged units or suitable for connection to remote condensers, are also available - optional direct expansion units fitted with scroll compressors, which have much lower noise and energy consumption than reciprocating compressors - R410a refrigerant units available - optional **Free Cooling coil** to reduce energy consumption required through use of mechanical cooling - \cdot plug fan with **Electronically Commuted 'EC' fans** option, to allow fully modulating control of airflow - low component face velocities, for a lower total pressure drop and reduced energy consumption - **minimised dimensions**, enabling one of the market's greatest ratios between sensible cooling capacity and base foot print # YORK® YC-P Series Close Control Air Conditioners A complete range from 7.8 kW up to 160.3 kW # High energy efficiency and minimum environmental impact **"P" Series** air conditioners for close control applications are specialised machines with design and operating features which clearly differentiate them from standard air conditioning units. The "P" Series air conditioners offer very high energy efficiency values in all operating conditions which translates into less CO_2 emissions and particularly low running costs. Though optimised for use in data centers and telephone exchanges, they are equally valid in special applications such as measurement laboratories, TV recording studios, museums, control rooms for electricity power stations and railway junctions and other areas where there are prevalent sensible thermal loads and crowding is negligible. Their application is also ideal in widely varied industrial sectors: optics, electronics, electromedical equipment, electronic equipment production, musical instrument production etc. ### Optimal efficiency Johnson Controls' "P" Series design offers the highest sensible cooling capacity with the minimum footprint possible, which translates into optimal ratio levels of cooling capacity to footprint area. This is an important feature in reducing the space needed by machinery, allowing more room in the space for IT equipment. This advantage is especially important given the progressive increases in capacity required by data centers and other computer applications which, over time, need the addition of extra air conditioners. Clean efficiency is also ensured by the use of the R-410A refrigerant, respectful to the ozone layer. ### Features and performance ### Brushless DC compressors with inverter technology - · Adapting cooling capacity to the real requirements of the plant is one of the principal conditions of guaranteeing the flexibility required by the most advanced systems. By incorporating BRUSHLESS **DC INVERTER** technology into the compressors it is possible to maximize the performance of the motor, especially at partial loads, the control of which is integrated in the microprocessor. - The cooling coils of the downflow units (YC-UP), both in chilled water and direct expansion versions, have aluminium fins with a hydrophylic treatment that alleviates the risk of condensation and the coil face being covered with water, which would compromise the thermal performance and therefore the air conditioning capacity. - The use of the environmentally friendly refrigerant HFC R410A does not contribute to the depletion of the ozone layer. - · Thanks to its larger surface area, the filter on the coil allows lower face velocity, which results in lower pressure drop. - · The lower energy consumption of these air conditioners, at the same efficiency, results in a much reduced TEWI (Total Equivalent Warming Impact). The application of EC plug fans reduces both energy consumption and noise levels. ### Microprocessor regulation The Standard digital microprocessor - allows management of all typical air-conditioning functions: cooling, heating, humidification, dehumidification and filtering - · ensures a regular and optimised operation as to both performance and consumption, providing as well alarm management and selfdiagnosis. ### Cooling circuit The air conditioners with direct expansion coil have a frigorific circuit equipped with: scroll compressor with all necessary protective devices, high pressure (manual reset) and low pressure (automatic reset) switches, dehydrating filter with refrigerant sight glass. YC-OPA, YC-UPA models for pairing with remote condensers, are already equipped with a pressurisation nitrogen charge. The refrigerant charge, and the oil top-up (if required), shall be made by the installer on site. YC-OPA and YC-UPA air conditioners in self-contained packaged format with built-in water-cooled condensers (accessory), are supplied with full refrigerant and oil charge. ### Local network management or remote control YORK® YC-P Series air conditioners are capable of standalone operation, local private network with multiple units (up to 12) or fully integrated with Metasys® Building Management System from Johnson Controls. The YORK® YC-P Series are equipped with an innovative local network monitoring (LAN) system that simplifies management, simplifies maintenance, and optimizes operational safety. The innovative smart net system allows to revolutionize the local network concept. In fact, taking advantage of the modulation capabilities of the components, this system allows you to actively share the workload between all units in the local network. Thanks to the breakdown of the workload, it is possible to increase the efficiency of the system by partially requesting the main components such as fans, compressors, electric batteries and humidifiers. This partitioning translates directly into energy savings of up to 60% compared to redundant networks. In fact, instead of having active units that work 100% of their performance while one (or more) machines are stationary, the smart net system allows the entire unit group to have 50 or 60% of their maximum workload. In remote applications, the machines can be controlled from remote positions interfacing with common Building Management Protocols such as BacNET, LON and Modbus, either via GSM Modem or TCP/IP Internet Protocol. For total integration with Johnson Control Metasys® Building Management Systems (BMS) the units are equipped with an RS485 card working with BacNET MS/TP protocol. Manufacturer reserves the rights to change specifications without prior notice. ### Electronic expansion valve Electronic expansion valves are one of the most recent pieces of equipment that enable us to improve the energy efficiency at partial loads of direct expansion machines. These valves are installed at the inlet of the evaporator, substituting the traditional thermostatic expansion ones: this allows more precise control of the quantity of refrigerant entering the evaporator, and guarantees good capacity regulation, typically between 100% and 50%. Electronic expansion valves also allows control of the amount of overheated gas at the outlet of the evaporator, thus allowing a significant reduction of the condensation pressure during winter or night-time operation whilst maintaining the evaporation pressure unchanged. Adoption of the electronic expansion valve (optional) guarantees a significant increase of the EER values. # One or two completely independent compressors Models with "1" as the last digit of the unit model number have a single circuit and a single compressor. Those with "2" as the last digit on the other hand have two completely independent refrigerant circuits and two compressors. The circuits are fitted with all the safety and regulation devices necessary for efficient and reliable operation. The evaporator coil can be single or double circuit depending on the number of compressors. ### Hydraulic circuit Air conditioners with chilled water coil, **YC-OPU** and **YC-UPU**, include a finned coil and a three-way motorised valve for water flow regulation. The hydraulic circuit is provided with copper tubes. The coils are optimised for both water with a temperature of 7/12 and for higher ones such as 15/20. ### Modulating regulation of the cooling capacity If a very precise regulation and high response speed are required, a modulating valve is installed as standard. This valve is recommended in case of functionment with a lot of fresh air. ### **Control Panel** All the units are equipped with a complete control panel with main isolator switch. Magnetothermic switches, contactors, and all necessary protection is provided, as required by legal codes and standards. The control panel of the units equipped with compressors ("A" as third letter of the identification code) has as standard a phase sequencer, which prevents the compressor from getting damaged when counter running. Also, the control panel has 4 configurable input and output for remote signalling, as well as two terminals for starting up and stopping the unit from remote position. The condenser fan speed controller (accessory) is installed in the unit and controlled with a 0–10V signal from the microprocessor. All the control parameter are managed by the microprocessor. The controller is valid for all the AC 230V motors. EC fans control and power lines available as alternatives.
Modulating controller display and keypad ### Large surface filters The units are equipped with self-extinguishing media class G4 filters. The filters are installed inclined before the cooling coil in order to offer a larger surface and allow lower air crossing speeds, with lower energy consumption. M5 or F7 filters ON COILS available as accessories. ### Design suitable to civil environments **YORK® YC-P Series** air conditioners have a pleasant and functional design, suitable for installation in civil environments. Their structure consists of aluminium profiles and closing panels hinged on them. Both panels and profiles are epossidic painting RAL 7024. Two versions are available for up flow units (**YC-OP**): front grille & top air discharge (standard), or blind front panel, suction from the bottom and top discharge (optional). ### Fan section ### New generation of electronic fans The ever-growing necessity to save energy has made the use of high-performance EC Plug Fans indispensable in reducing plant costs. The fans installed in **YC-P** close control air conditioners are fitted with **BRUSHLESS EC** (Electronically Commutated) **MOTORS** and a composite-material impeller to maximize performance. Important advantages obtained as a result include: - Power drawn by the fans is reduced by over 25% compared to fans using traditional AC technology. - \cdot Power drawn by the fans is reduced by about 15% compared to the previous generation of EC fans. - · Noise levels are reduced by over 5 dB(A) at partial loads. - Risk to the plant is reduced as the mechanical parts are subjected to less use. Thanks to integration with the microprocessor, the EC fans can be controlled to: - Reduce rotation speed and therefore air quantity as the cooling capacity requirement decreases, thus making possible a 50% energy saving, operating at partial loads, compared to a constant velocity system. - Maintain constant air quantity controlled in real time by differential pressure sensors, optimal control if F7 filters are installed. - Maintain constant air pressure in the raised floor or in the compartmented areas in order to optimize air distribution avoiding hot spots and guarantee maximum modularity of the plant plant. ### **Regulation Options** Johnson Controls provides four different alternatives for the regulation of the airflow of the EC fans depending on the requirements of the installation: - Constant fan rotation speed. The available high static pressure is ideal for most applications. The effective air flow depends on the real pressure drop of the aeraulic system of the installation, however it can be calculated through Johnson Controls computerised selection program. - 2. Constant airflow independent of the pressure drop of the system. In order to maintain a constant airflow, an internal sensor guides the microprocessor management system to vary the airflow handled by the fan, depending on the degree of the system. This ensures that insufficient cooling does not occur due to reduced airflow arising from dirty filters. - 3. Variable airflow depending on the cooling capacity required by the installation. This is the classic VAV (Variable Air Volume) plant arrangement which responds to increased demand by a proportionate increase in airflow and vice versa. This type of plant offers interesting energy advantages at partial loads, which occur extensively throughout the year, especially at night. - 4. Airflow as a function of pressure in the raised floor. This regulation alternative is envisaged for plants with raised floors where the air is distributed under the floor itself. The microprocessor management system maintains constant under-floor pressure. In particular, in very large areas subdivided into multiple local zones with partition dampers driven by individual thermostats, constant regulation of the pressure is necessary to avoid imbalances in the distribution of the air. ### Downflow supply (UPA-UPU models) Standard version with suction with upper air intake and downflow, with raised floor stand. Suction with upper air intake and front air outlet with distribution plenum with adjustable grilles. Suction with upper air intake and front air delivery with grid front panel. ### Upflow supply (OPA-OPU models) Standard version with front air intake and upflow air delivery. Front air intake and front air outlet delivery with distribution plenum with adjustable grilles. Bottom air intake with raised floor support, blind front panel and upflow air delivery. ### Special versions # "Water to air free cooling": using renewable energy sources YC-OPA.../FC, YC-UPA.../FC air conditioners are equipped with a "Free cooling" system consisting of an additional chilled-water cooling coil integrated in the aluminium fins of the unit's direct expansion one, with a three-way modulating valve controlled by the controller. As long as the outside conditions allow the water to respond totally or partially to the cooling request, the controller cuts out or minimises the compressors' intervention, so reducing substantially the energy consumption. The water cooled condensers of the frigorific circuit are equipped with a pressostatic system for the regulation of the condensing pressure (flooding valves). The pumps and the expansion tank are not included in Johnson Control's supply. The system widely uses the outdoor air—a renewable energy source—in lieu of or in addition to the mechanical cooling. # 'Two Sources' option utilising excess energy from building HVAC systems This system consists of the same chilled-water cooling coil as the "Free cooling", but fed by the building water chiller. A built in frigorific circuit enters in operation in case of lack of chilled water. The result is the maximum security or a remarkable reduction of both consumption and running costs. This system can also use the direct-expansion coil circuit as primary cooling source and, in case of an emergency, the chilled-water coil connected with the tap water network. The "Two Sources" version is available for units with direct expansion circuit **YC-OPA..../TS**, **YC-UPA..../TS** as well as units with built in water cooled condenser (accessory) and with double chilled water coil **YC-OPU.../TS**, **YC-UPU.../TS**: one for district water and the other for tap water or water from a chiller (emergency). ### Focus on Free Cooling ### High energy saving air conditioning unit Using renewable energy sources is required to reduce the environmental impact of systems. Our innovative free cooling systems are able to achieve energy savings of over 50% compared to a conventional air conditioner. ### Free Cooling from renewable sources Using **outside air to cool environments** is the primary source of energy savings available in temperate climate areas. YORK can now offer a range of **FREE COOLING** close control air conditioning units which ensure high energy savings combined with the efficiency and reliability that distinguish this type of product. ### Intelligent energy saving The high number of hours per year in which **FREE COOLING** systems can be used ensures that the air conditioning system energy consumption can be **reduced by over 50%.** This is reflected in an immediate environmental sustainability increase, thanks to a significant reduction in CO2 emissions, and the system operating costs. ### Free Cooling operating hours per year | | Amsterdam | Athens | Belgrade | Berlin | Brussels | |----------------|-----------|--------|----------|--------|----------| | Nbr. hours (1) | 5,641 | 4,491 | 5,105 | 5,583 | 5,545 | | Percentage (2) | 64% | 51% | 58% | 64% | 63% | | | Bucharest | Budapest | Copenhagen | Dublin | Helsinki | |----------------|-----------|----------|------------|--------|----------| | Nbr. hours (1) | 5,503 | 5,279 | 5,861 | 7,161 | 5,796 | | Percentage (2) | 63% | 60% | 67% | 82% | 71% | | | Istanbul | London | Madrid | Milan | Moscow | |----------------|----------|--------|--------|-------|--------| | Nbr. hours (1) | 4,779 | 5,575 | 4,643 | 5,281 | 6,046 | | Percentage (2) | 55% | 64% | 53% | 60% | 71% | | | Oslo | Paris | Prague | Reykjavik | Vienna | |----------------|-------|-------|--------|-----------|--------| | Nbr. hours (1) | 6,202 | 5,187 | 5,619 | 7,743 | 5,651 | | Percentage (2) | 73% | 59% | 64% | 88% | 65% | (1) Number of hours with temperatures lower than or equal to 18°C. (2) Percentage calculated on a total of 8,760 hours per year. ### **Indirect Free Cooling** The indirect FREE COOLING system is characterised by a hybrid unit, consisting of a primary water circuit and a secondary direct expansion or chilled water circuit. The primary water circuit is connected to a dry cooler that uses outside air – a source of renewable energy – to cool water. The secondary circuit on the other hand exploits the mechanical cooling. ### Optimised operating procedures Depending on the outside air temperatures, three possible operating procedures are possible: ### **Total Free Cooling** The unit completely operates in **FREE COOLING** without triggering mechanical cooling. ### Partial Free Cooling In addition to operating the **FREE COOLING** circuit, mechanical cooling can be triggered for the time strictly necessary to meet the demand for cooling. ### No Free Cooling Regulation is completely entrusted to mechanical cooling, excluding the **FREE COOLING** circuit.cooling. ### Self-adaptive set-point of the dry cooler In order to maximise the efficiency of the **FREE COOLING** system, the unit can handle the regulation of the dry cooler coupled to it directly. Thanks to the self-adaptive set-point function, the fan speed can be regulated so that the water always has a temperature consistent with the outside air conditions. This leads to an **increase in the system efficiency**, allowing you to maximise the performance of both the **FREE COOLING** circuit and the direct expansion circuit, ensuring low condensing temperatures. In addition, the fans of the dry
cooler will partially operate even with high temperatures, thereby increasing the energy savings of the system. ### Focus on Two Sources ### Dual circuit system Some critical applications often require safety devices that prevent discontinuity of operation due to system failure. To allow for such an eventuality, YORK can offer "Two Source" systems provided with two totally independent cooling sources. ### High operational safety In an air conditioning system, the main cooling source may be insufficient to guarantee suitable environmental conditions. This may be due to an overload of the system, maintenance, possible seasonal closures or any type of emergency that may arise. A reduction in the machine cooling capacity can lead to great instability in the system, reducing the ability to control the system thermohygrometric conditions. So as to avoid these problems, specific **TWO SOURCES (TS)** units have been developed providing a second source of cooling, complete with its own control valve and totally independent from the primary one. ### A safe, flexible system The Two Sources system is very flexible and allows three different types of systems: ### Chilled water + direct expansion Two Sources The chilled water primary source of the unit is connected to a building chiller or to District Cooling, whereas the secondary, emergency, and direct expansion one is connected to remote air or inbuilt water condensers. ### Direct expansion + chilled water Two Sources The direct expansion primary source of the unit is connected to remote air or in-built water condensers, whereas the secondary, emergency, and water one is connected to a dedicated chiller, to a groundwater/aqueduct water distribution network or to District Cooling. ### Chilled water + chilled water Two Sources Both sources of the unit are chilled water coils. The primary one is normally connected to a building chiller or to District Cooling. The emergency source can be connected to a dedicated chiller or a groundwater/ aqueduct water distribution network. ### Fittings and accessories Numerous accessories and options are available for the "P" Series air conditioners to personalise the installation depending on the requirements of the plant and its design. Divided by function, they include: ### Free cooling or two sources - · Additional Free cooling circuit. - · Additional Two sources circuit. ### **Alarms** - · Water alarm (supplied loose). - Out-of-range air discharge temperature alarm (standard). - · Smoke/fire alarm terminals (standard). # Water cooled condensers and pressostatic valves - · Welded stainless steel water cooled plate condenser. - 2 way modulating valve (only if the water condenser is selected). ### Sound proofing devices • Sound damped duct for air suction or discharge (h=550 mm). Allows a reduction of approx 4 dB(A) of the SPL of the unit. ### Panels and base - Blind front panel (OP) and open base for bottom air intake. - Front panel with grille in the lower part (UP) and closed base. ### **Plenum** • Plenum (h=550 mm) for air discharge or intake with adjustable grille. # Direct expansion unit cooling capacity regulation - Electronic expansion valve (standard). - · INVERTER compressor available. ### Heating, reheating and humidification - Single-step or double-step low thermal inertia electrical heating/ reheating coil. - · Immersed-electrode modulating humidifier and dehumidification control - · Humidity sensor for the single control of dehumidification. - Humidity sensor and control signal for external humidification control not supplied by Johnson Controls. ### Boards and sensors · RS 485 communication board. ### **Dampers** - · Gravity-operated overpressure dampers on the air outlet (OP series). - · Motorised overpressure dampers on the air intake (UP series). ### **Under bases** - · Adjustable under base (OP only). - · Adjustable under base with air deflector (UP only). ### Fans and filters - Electronic EC fans with incorporated inverter for constant rotation speed regulation (standard). - Electronic EC fans with incorporated inverter for the regulation of air flow in relation to the required cooling capacity (standard). - Electronic EC fans with incorporated inverter for the regulation of constant pressure in the raised floor. - · M5 or F7 on the COIL. - · Monophase condenser-fan rotation speed variator # Performance at JOHNSON CONTROLS test conditions* ### **Technical Characteristics** | Models | | 71 | 141 | 211 | 251 | 301 | 302 | 361 | 461 | 422 | 512 | 662 | 852 | 932 | |---------------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------| | Performances | | | | | | | | | | | | | | | | Total cooling capacity | kW | 7.8 | 14.9 | 21.3 | 26.8 | 33.6 | 30.9 | 37.8 | 48.1 | 43.7 | 54.2 | 67.3 | 90.1 | 93.3 | | Sensible cooling capacity | kW | 7.6 | 13.4 | 21.3 | 25.6 | 31.7 | 30.6 | 37.8 | 47.9 | 43.7 | 52.8 | 64.8 | 77 | 85 | | Airflow | m³/h | 3.69 | 3.37 | 3.15 | 3.18 | 3.08 | 3.2 | 3.3 | 3.43 | 3.27 | 3.25 | 3.13 | 3.33 | 3.53 | | EER | | 2.200 | 3.200 | 7.000 | 7.000 | 8.700 | 8.700 | 14.500 | 14.500 | 14.500 | 14.500 | 17.900 | 17.900 | 20.700 | | Sound pressure level | dB(A) | 51 | 57 | 62 | 62 | 60 | 60 | 65 | 65 | 65 | 64 | 62 | 63 | 60 | | Dimensions & weight | | | | | | | | | | | | | | | | Lenght | mm | 750 | 750 | 860 | 860 | 1.410 | 1.410 | 1.750 | 1.750 | 1.750 | 1.750 | 2.300 | 2.300 | 2.640 | | Depth | mm | 601 | 601 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | | Height | mm | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | | Net weight | kg | 180 | 210 | 270 | 270 | 320 | 340 | 440 | 450 | 450 | 500 | 640 | 660 | 860 | | Free Cooling | | 0 | 0 | 0 | 0 | • | • | 0 | 0 | 0 | 0 | • | • | 0 | | Two Sources | | 0 | 0 | • | 0 | • | • | 0 | 0 | 0 | 0 | • | • | 0 | ^{*} Performance refers to: R410a refrigerant; condensing temperature 45°C; incoming air 24°C-45%Rh; water 7/12°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load. EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded). Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010. ### **Technical Characteristics** | Models | | 71 | 141 | 211 | 251 | 301 | 302 | 361 | 461 | 422 | 512 | 662 | 852 | 932 | |---------------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------| | Performances | | | | | | | | | | | | | | | | Total cooling capacity | kW | 7.8 | 14.9 | 21.3 | 26.8 | 33.6 | 30.9 | 37.8 | 48.1 | 43.7 | 54.2 | 67.3 | 90.1 | 93.3 | | Sensible cooling capacity | kW | 7.6 | 13.4 | 21.3 | 25.6 | 31.7 | 30.6 | 37.8 | 47.9 | 43.7 | 52.8 | 64.8 | 77 | 85 | | Airflow | m³/h | 3.69 | 3.37 | 3.15 | 3.18 | 3.08 | 3.2 | 3.3 | 3.43 | 3.27 | 3.25 | 3.13 | 3.33 | 3.53 | | EER | | 2.200 | 3.200 | 7.000 | 7.000 | 8.700 | 8.700 | 14.500 | 14.500 | 14.500 | 14.500 | 17.900 | 17.900 | 20.700 | | Sound pressure level | dB(A) | 51 | 57 | 62 | 62 | 60 | 60 | 65 | 65 | 65 | 64 | 62 | 63 | 60 | | Dimensions & weight | | | | | | | | | | | | | | | | Lenght | mm | 750 | 750 | 860 | 860 | 1.410 | 1.410 | 1.750 | 1.750 | 1.750 | 1.750 | 2.300 | 2.300 | 2.640 | | Depth | mm | 601 | 601 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | 880 | | Height | mm | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | | Net weight | kg | 180 | 210 | 270 | 270 | 320 | 340 | 440 | 450 | 450 | 500 | 640 | 660 | 860 | | Free Cooling | | 0 | 0 | 0 | • | • | 0 | 0 | 0 | 0 | 0 | • | • | 0 | | Two Sources | | 0 | 0 | • | • | • | 0 | 0 | 0 | 0 | 0 | • | • | 0 | ^{*} Performance refers to: R410a refrigerant; condensing temperature 45°C; incoming air 24°C-45%Rh; water 7/12°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load. EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded). Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010. ### Performance at JOHNSON CONTROLS test conditions* ### **Technical Characteristics** | YC-OPU: with chil | led wa | nter coil and u | up-flow air su | pply | | | | | | |---------------------------|--------|-----------------|----------------|-------|-------|--------|--------|--------|--------| | Models | | 10a | 20a | 30 | 50 | 80 | 110 | 160 | 220 | | Performances | | | | | | | | | | | Total cooling capacity | kW | 10.2 | 18 | 32.4 | 43.6 | 66.8 | 80.2 | 121.9 | 160.3 | | Sensible cooling capacity | kW | 9 | 15 | 30 | 38 | 62 | 72 | 110 | 144 | | Airflow | m³/h | 34.42 | 28.52 | 22.83 | 21.48 | 23.95 | 24.29 | 23.62 | 24.29 | | EER | | 2.200 | 3.200 | 7.400 | 8.200 | 15.400 | 17.000 | 26.000 | 34.000 | | Sound pressure level | dB(A) | 51 | 57 | 63 | 59 | 66 | 61 | 63 | 64 | | Dimensions & weight | | | | | | | | | | | Lenght | mm | 750 | 750 | 860 | 860 | 1.750 | 1.750 | 2.640 | 3.495 | | Depth | mm | 601 | 601 | 880 | 880 | 880 | 880 | 880 | 880 | | Height | mm | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | | Net weight | kg | 155 | 160 | 220 | 240 | 340 | 360 | 540 | 700 | | Free Cooling | | 0 | 0 | 0 | • | 0 | • | • | 0 | | Two Sources | | 0 | 0 | 0 | • | 0 | • | • | 0 | ^{*} Performance refers to: R410a refrigerant; condensing temperature 45°C; incoming air 24°C-45%Rh; water 7/12°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load. EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption +
fans power consumption (air cooled condensers excluded). Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010. ### **Technical Characteristics** | YC-UPU: with chil | led wa | ter coil and o | down-flow air | supply | | | | | | |---------------------------|--------|----------------|---------------|--------|-------|--------|--------|--------|--------| | Models | | 10 | 20 | 30 | 50 | 80 | 110 | 160 | 220 | | Performances | | | | | | | | | | | Total cooling capacity | kW | 10.2 | 18 | 32.4 | 43.6 | 66.8 | 80.2 | 121.9 | 160.3 | | Sensible cooling capacity | kW | 9.2 | 15.4 | 29.8 | 38.1 | 62.1 | 72 | 109.7 | 144 | | Airflow | m³/h | 34.42 | 28.52 | 22.83 | 21.48 | 23.95 | 24.29 | 23.62 | 24.29 | | EER | | 2.200 | 3.200 | 7.400 | 8.200 | 15.400 | 17.000 | 26.000 | 34.000 | | Sound pressure level | dB(A) | 51 | 57 | 63 | 59 | 66 | 61 | 63 | 64 | | Dimensions & weight | | | | | | | | | | | Lenght | mm | 750 | 750 | 860 | 860 | 1.750 | 1.750 | 2.640 | 3.495 | | Depth | mm | 601 | 601 | 880 | 880 | 880 | 880 | 880 | 880 | | Height | mm | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | 1.990 | | Net weight | kg | 155 | 160 | 220 | 240 | 340 | 360 | 540 | 700 | | Free Cooling | | 0 | 0 | 0 | • | 0 | • | • | 0 | | Two Sources | | 0 | 0 | 0 | • | 0 | • | • | 0 | ^{*} Performance refers to: R410a refrigerant; condensing temperature 45°C; incoming air 24°C-45%Rh; water 7/12°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load. EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded). Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010. # YORK® YC-G Series Close Control Air Conditioners A complete range from 43 kW up to 170.2 kW ### **Applications** **"G" Series** YORK air conditioners consist of a family of units specially designed to exploit the plant characteristics of the latest generation of large Data Centres. In the design of air conditioning equipment for large Data Centres, the necessities of cable housing and for the distribution of the enormous quantities of air required to cool the servers have made it necessary to raise the height of the false floor to now reach the current 600–800 millimetres. This creates an ample space below the air conditioner destined to the installation of the plinth. This large space under the raised floor was therefore considered as the housing for the discharge fans. The air conditioners are supplied in two separate sections: the under-base containing the discharge fans to be installed under the floating floor, and the treatment unit with the exchanger coil, filters and the electrical panel. This large space under the raised floor is used to house the supply air fans. The air conditioners are therefore supplied in two separate sections: - The treatment unit with enlarged heat exchanger coil, filters and electrical panel. - The plinth containing the supply air fans, to be installed under the raised floor. The plinth with the fans is supplied to match the height indicated in the order from the customer. The two sections, shipped separately, are easy to install on-site as they require only electrical connection of the two junction boxes in the air conditioner and the plinth. ### **Downflow supply** Standard version for perimetral installation inside the Data Centre: the height of the raised floor must be minimum 550 mm. Version for perimetral installation inside the Data Centre with raised floor height less than 550 mm. In this case, the plinth with fixed height of 550 mm is supplied with lateral closure panels and must be installed above the floor. It is essential to check that the height of the ceiling is sufficient to ensure good air suction. Version for installation outside the Data Centre, without raised floor, rear air supply. In this case the plinth (fixed height 550 mm) is supplied with side closure panels and rear supply air grilles. Installation of the plenum with rear re-intake system is optional, if there is no ductwork. ### **Technical Characteristics** | | | ir conditioners with air-cooled or | | ··· <i>'</i> | |-------------------------------|-------|------------------------------------|--------|--------------| | Models | | 461 | 612 | 932 | | Total cooling capacity (1) | kW | 49.2 | 62.2 | 103.5 | | Sensible cooling capacity (1) | kW | 48.1 | 54.7 | 103.5 | | EER (2) | | 3.87 | 3.25 | 4.06 | | Airflow | m³/h | 9.500 | 10.000 | 19.000 | | Sound pressure level (3) | dB(A) | 57 | 58 | 59 | | Lenght | mm | 1.490 | 1.490 | 2.390 | | Depth | mm | 921 | 921 | 921 | | Height | mm | 1.990 | 1.990 | 1.990 | | Net weight | kg | 630 | 680 | 870 | | YC-UGU: chilled wat | er coil | air conditioners with dow | nflow air supply | | | |-------------------------------|---------|---------------------------|------------------|--------|--------| | Models | | 70 | 150 | 230 | 300 | | Total cooling capacity (1) | kW | 43.3 | 85.1 | 124.4 | 170.2 | | Sensible cooling capacity (1) | kW | 43.3 | 85.1 | 124.4 | 170.2 | | EER (2) | | 31.12 | 32.48 | 34.65 | 39.13 | | Airflow | m³/h | 9.500 | 19.000 | 28.500 | 38.000 | | Sound pressure level (3) | dB(A) | 57 | 59 | 61 | 60 | | Lenght | mm | 1.320 | 2.220 | 3.120 | 4.020 | | Depth | mm | 921 | 921 | 921 | 921 | | Height | mm | 1.990 | 1.990 | 1.990 | 1.990 | | Net weight | kg | 610 | 750 | 930 | 1.250 | ⁽¹⁾ Performance refers to: R410a refrigerant; condensing temperature 45°C; incoming air 32°C-30%Rh; water 15/20°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load. (2) EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded). (3) Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010. Manufacturer reserves the rights to change specifications without prior notice. # YORK® YC-R Series Close Control Air Conditioners A complete range from 23.9 kW up to 34.4 kW ### **Applications** "R" Series YORK air conditioners consist of a family of units specially designed and constructed to have the same dimensions as the racks. In the design of air conditioning plant for large Data Centres, the reduction of energy consumption is of ever increasing importance. For this reason the following concepts have become consolidated international standard practice: - The racks containing the servers are more often positioned according to the "hot corridor aisle" and "cold corridor/aisle" layout. - The working air temperatures are now allowed to go up to 30–35°C in the hot corridor and 20–25°C in the cold one, with very low humidity (never above 30%). Consequently, also the water temperature is allowed to rise up to 20–28°C, using the Free Cooling system to the best effect. - Server capacities keep going up while their dimensions keep going down. This means that more servers can be installed in a rack so that some of these racks, remaining empty, can be removed. At the same time the heat dissipated rises and more capacity is required from the air conditioners. - The servers work day and night albeit with a night time reduction of their capacity. It is therefore essential for the air conditioning installation to have an efficient modulating cooling capacity control and to be designed for minimum energy consumption and minimum environmental impact. # Horizontal supply ### **Technical Characteristics** | YC-HRA: direct expan | nsion a | ir conditioners with air-cooled or water-cooled co | ndensers and horizontal air supply | |-------------------------------|---------|--|------------------------------------| | Models | | 231 | 361 | | Total cooling capacity (1) | kW | 23.9 | 31.5 | | Sensible cooling capacity (1) | kW | 23.9 | 27.2 | | EER (2) | | 3.79 | 3.33 | | Airflow | m³/h | 6.000 | 6.800 | | Sound pressure level (3) | dB(A) | 52 | 54 | | Lenght | mm | 600 | 600 | | Depth | mm | 1.222 | 1.222 | | Height | mm | 1.985 | 1.985 | | Net weight | kg | 215 | 215 | | Free Cooling | | • | 0 | | Two Sources | | • | 0 | | Models | | 20 | 40 | |-------------------------------|-------|-------|-------| | Total cooling capacity (1) | kW | 23.9 | 34.4 | | Sensible cooling capacity (1) | kW | 23.9 | 34.4 | | EER (2) | | 25 | 27 | | Airflow | m³/h | 6.000 | 9.000 | | Sound pressure level (3) | dB(A) | 52 | 61 | | Lenght | mm | 300 | 600 | | Depth | mm | 1.200 | 1.222 | | Height | mm | 1.970 | 1.985 | | Net weight | kg | 120 | 190 | | Free Cooling | | 0 | • | | Two Sources | | 0 | • | ⁽¹⁾ Performance refers to: R410a refrigerant; condensing temperature 45°C; incoming air 32°C-30%Rh; water 15/20°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load. (2) EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded). (3) Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010. # **SmartPac** As the need for ever more connected buildings and controls grows, and the Internet of Things approaches, SmartPac from Johnson Controls offers factory packaged control solutions that reduce cost, enhance quality and optimise site time. Once on site, the equipment can be started immediately. Commissioning time is dramatically reduced, allowing to better control the project costs through simplifying equipment installation and commissioning. Quality is ensured through application and testing to European Installation regulations at the factory. Pre-installed software is configured to deliver air at the specified volume, temperature and humidity. ### SmartPac and YORK® Air Handling units The
Air Handling Unit arrives on site ready to connect to the site network, and final commissioning is simplified through the unit's keypad and display. Panel Power wiring, controls wiring, Variable Speed Drive, pre-engineered controller and required peripheral devices are all supplied, factory fitted and tested. ### SmartPac and YORK® Fan Coil units YORK® Fan Coil Units are available with factory packaged controls and numerous options for controllers and valves to allow reduced installation time on site. A range of standard configurable or fully programmable controllers are offered along with a choice of Industry standard protocols. Valve requirements can also be met with a wide range of modulating and on/off actuators and isolation valves available and factory fitted. # 33.0 deg 0 13.0 deg 0 ### SmartPac and YORK® Rooftop & Close Control units Factory packaged controls' solution enable, to dramatically reduce on-site commissioning costs. Both are delivered to site with pre-installed controls, factory tested and ready to apply the power. ### SmartPac and YORK® Standard Control panel Furthermore, Variable Speed Drives give extra efficiency communicating with the Johnson controller using industry standard protocols and providing for seamless communications with exisiting BAS control systems. ### **Advanced Control Made Easy** Comfort, productivity and up to half of the energy used in your building – these are all factors affected by how your chiller operates and how it interacts with other components in your HVAC&R system. To help maximize efficiency and keep you in control, some of our YORK Airside equipment is available with integrated SMART EQUIPMENT™. This technology allows the equipment to connect seamlessly to building controls like our world-class *Verasys™* system, where smart-enabled equipment can self-identify and interoperate. Verasys™ provides a truly plugand-play experience, with no programming or commissioning tools required. Remote access over a secure internet connection and alarm notifications via email or text are possible through Verasys™. The user-friendly graphical interface provides easy access to critical equipment and facility information to help minimize the risk of unplanned downtime and costly repairs. Verasys™ also provides enhanced energy efficiency control, allowing a facility owner to potentially move from an average Class D efficiency classification to a Class A efficiency classification according to the EN 15232 standard. The key to this efficiency is demand control, where *Verasys™* routes the energy requirements of a room or space to the heating and cooling equipment matching the demand-side and the supply-side to provide greater overall energy efficiency. # Rooftop Equipment ROOFTOP LARGE ROOFTOP SPLIT ROOFTOP SYSTEM # **Control System** # YKN2open The YKN2open is a controller regulating all components and accessories. It will pro actively manage cool and heat stages to maintain a stable room temperature maximizing the efficiency. Additionally, the benefits are: - · Redundancy on cool and heat stages (if one step is locked out, the PCB starts another one automatically). - · Random start between units to minimise electrical tariff. - · All stages will start in sequence to reduce peak inrush. - Reduces nuisance calls by using 3 times "you are out" on all safeties before a hard lockout occurs. - · Automatic restart after power failure. Compressors run time priority. - · Alarm output relay and led diagnostic code. No parameters to check before starting. - · Lockout and incident level of protection. Last 10 lockouts stored in a non-volatile memory. - 4 heating stages on hot water heating. BMS connection (N2 Open protocol). ### Thermostat DPC-1 - Day (normal), night (economy) and unoccupied (stand by). - Lockout code on screen gives direct diagnostics. - \cdot ON/OFF or programmable from dip switch setting. - Day or night programmable state avoids wide internal temperature variation. - 3 preset and 3 programmable profiles. - · Temperature override. - Select the control sensor you want to use (integrated in the thermostat, return air in duct or room sensor). - Turbo, normal or economy logic from dip switch setting. - From -3°C to +3°C sensor offset. - Average temperature with room or duct sensors. ### Thermostats with integrated sensors | Thermostat mo | odels | DPC-1 | DPC-1R | |---------------|-----------------|------------|------------| | | Code | S603786044 | S603786045 | | Rooftop | All models | 0 | 0 | | Rooftop Split | VIRSAC & VIRSAH | Χ | 0 | | | | | | | Main features | | | | | | |----------------------------------|---------------------------|---------|---------------|--|--| | Strategy | Turbo, normal or economy | | | | | | Auto restart after power failure | • | • | • | | | | Number of cool stages | 2 | 1 | 2 | | | | Number of heat stages | 2 | 1 | 2 | | | | Auxiliary Heat | • | |) | | | | Automatic Heat/Cool change over | • | |) | | | | Continuous or auto indoor fan | • | |) | | | | Manual setback (Day/Night key) | Day, night and unocuppied | | | | | | Override possibility | • | |) | | | | Compressor anti short cycle | • | |) | | | | °C Range cooling / heating | 10 to 32°C / 9 to 32°C | | | | | | Programmable, 7-day | • | |) | | | | Lockout codes | • | |) | | | | Outdoor air temperature | • | with YK | with YKN2Open | | | | Sensor selection | • | • | | | | X : Delivered as standard with the unit. RS-1 ### Room sensor Indoor remote probe to provide close control of the ambient temperature at a location away from the DPC-1 and DPC-1R thermostats. Code: S603786042 AS-1 ### Ambiance sensor Digital remote probe to provide close control of the ambient temperature at a location away from DPC-1 and DPC-1R thermostats. Up to 4 remote probes can be connected to make an average of the room conditioned. Code: S603786049 DS-1 ### Duct sensor Remote probe to provide close control of the return air temperature in the duct, at a location away from DPC-1 and DPC-1R thermostats. The use of this probe is recommended when an indoor remote probe cannot be installed in the area where temperature is to be controlled. Code: S603786047 # **BMS Connection** Sample screen - BMS communication through new board YKN2Open delivered as standard (N2Open protocol) - Possibility to fully control the unit and monitor more than 160 variables per unit. - \cdot Can be integrated with other systems like lighting, fire&security or other HVAC equipment. - Fully tailored solutions available (ask JCI sales office) ### **ACCESS CONTROL** Fire & Security ### **FAN COILS** **HVAC** application # **ACTIVA** Rooftop ARC-ARG-ARH-ARD A complete range from 17 kW up to 40 kW ### **Features** - · High efficiency EER and COP - Low noise level - EC supply fan - All configurations: Cooling only, Cooling + gas, Heating, Heating + Gas - BMS connection as standard (N2Open protocol) - Compact design - Energy recovery (enthalpy wheel) - External HP & LP access - · Filters G4, F6 & F7 available # ARC 032 AB Nomenclature B = Blue fin C = Copper fin (ask JCl) A = version Capacity range: 032 = 32 kW Product category: C = Cooling H = Heat pump G = Cooling & Gas D = Heat pump & Gas (Dual) Rooftop Activa series # **ACTIVA** Rooftop # ARC-ARG-ARH-ARD 017 to 040 AB/BB ### Technical features | Cooling only mo | dels | | ARC 017 AB | ARC 022 AB | ARC 032 AB | ARC 040 AB | | | |--|---------------------------|------------|-----------------------------|--------------|-------------------------|------------|--|--| | Net cooling capac | ties | kW | 18.2 | 22.2 | 31 | 39.9 | | | | Power input | | kW | 5.5 | 7.4 | 9.9 | 14.2 | | | | SEER | | | 3.82 | 3.85 | 4.06 | 3.28 | | | | ηs,c | | | 149.6 | 151.1 | 159.4 | 128.1 | | | | Working range (fu | ll load / partial load) | °C | | 7°C ~ 46°C / | -10°C ~ 52°C | | | | | Heat pump mod | els | | ARH 017 BB | ARH 022 BB | ARH 032 AB | - | | | | Net cooling capac | ties | kW | 18.2 | 24 | 31 | - | | | | Power input in cod | oling | kW | 5.5 | 7.4 | 9.9 | - | | | | Heating capacities | (1) | kW | 17.2 | 23.5 | 30.9 | - | | | | Power input in hea | ating | kW | 4.5 | 5.7 | 9.8 | - | | | | SCOP | | | 2.96 | 2.96 | 2.96 | - | | | | ηs,h | | | 115.2 | 115.2 | 115.3 | | | | | Working range (fu | ll load / partial load) | °C | | -10°C ~ 46°C | / -10°C ~ 52°C | | | | | Cooling only + (| as heating models | | ARG 017 AB | ARG 022 AB | ARG 032 AB | ARG 040 AB | | | | Net cooling capac | ties | kW | 18.2 | 22.2 | 31 | 39.9 | | | | Cooling power inp | ut | kW | 5.5 | 7.4 | 9.9 | 14.2 | | | | Standard Heating | capacities (1) NET | kW | 23 | 23 | 41 | 41 | | | | Natural gas 2ND-l | | m³/h | 2.5 | 2.5 | 4.5 | 4.5 | | | | Working range (fu | l load / partial load) | °C | | -15°C ~ 46°C | / -15°C ~ 52°C | | | | | Heat pump + Ga | s heating models | | ARD 017 BB | ARD 022 BB | ARD 032 AB | - | | | | Net cooling capac | ties | kW | 18.2 | 24 | 31 | - | | | | Power input in cod | oling | kW | 5.5 | 7.4 | 9.9 | - | | | | Heating capacities | (1) | kW | 17.2 | 23.5 | 30.9 | - | | | | Power input in hea | Power input in heating kW | | 4.5 | 5.7 | 9.8 | - | | | | Standard Heating capacities (1) NET kW | | kW | 23 | 23 | 41 | - | | | | Natural gas 2ND-H | ł, G20 | m³/h | 2.5 | 2.5 | 4.5 | - | | | | Working range (fu | ll load / partial load) | °C | -15°C ~ 46°C / −15°C ~ 52°C | | | | | | | Common charac | teristics | | | | | | | | | Power supply | | | | 400V/3 + | N/ 50Hz | | | | | Main switch | | А | 20 | 25 | 40 | 50 | | | | Main cable | | Nbr. x mm² | 5 x 4 | 5 x 6 | 5 x 10 | 5 x 16 | | | | Cable to thermost | at | Nbr. x mm² | | 10 x | 0.22 | | | | | Number of circuits / Compressor type | | | 1 / 1 x Scroll | | 1 (Tandem) / 2 x Scroll | | | | | Evaporator fan | Airflow | m³/h | 3400 | 4300 | 5700 | 7400 | | | | at nominal airflow | ASP | Pa | 600 | 600 | 600 | 600 | | | | Nett dimensions | Height | mm | 1 420 | 1 420 | 1 420 | 1 420 | | | | | Length | mm | 1 866 | 1 866 | 2 135 | 2
135 | | | | | Depth | mm | 1 540 | 1 540 | 1 850 | 1 850 | | | | Nett weight ARC | / ARG | kg | 420 / 462 | 440 / 482 | 581 / 642 | 585 / 646 | | | | Nett weight ARH | / ADD | kg | 425 / 467 | 445 / 487 | 587 / 648 | | | | All the data are at EUROVENT conditions with 400V/3+N/50Hz. Cooling: Entering indoor coil temp. 20°C and outdoor temperature 35°C - Heating: Entering indoor coil temp. 20°C and outdoor temperature 7°C / 6°C WB (1) Add indoor fan motor consumption to know total heating capacity. ### Codes | Cooling only models | ARC 017 AB | ARC 022 AB | ARC 032 AB | ARC 040 AB | | | | |-----------------------------------|------------|------------|------------|------------|--|--|--| | Cooling only models | S661752110 | S661752120 | S661752130 | S661752150 | | | | | Heat pump models | ARH 017 BB | ARH 022 BB | ARH 032 AB | - | | | | | | S661752513 | S661752127 | S661752133 | - | | | | | Cooling only + Gas heating models | ARG 017 AB | ARG 022 AB | ARG 032 AB | ARG 040 AB | | | | | | S661752111 | S661752121 | S661752131 | S661752151 | | | | | Heat pump + Gas heating models | ARD 017 BB | ARD 022 BB | ARD 032 AB | - | | | | | | S661752118 | S661752128 | S661752132 | - | | | | | Thermostat | | | | | | | | | to be ordered separately | DPC-1 | | | | | | | Manufacturer reserves the rights to change specifications without prior notice. # Activa rooftop details & features ### High Efficiency High efficiency compressor and fans managed by an smart control allows the unit to achieve and maintain the level of comfort required in the most efficient way, reducing therefore the energy bill. ### Low Noise Ultra quiet fans and optimized airflow reduces the noise level increasing the comfort. Compressors are mounted on shock absorbers and anti-vibration springs are available to avoid vibration transmissions into de building. # Easy Installation and Maintenance The high level of usability of the control, the internal solutions adopted (like direct driven fans with variable speed) and the easy access to components simplify and reduce the need of external interventions. Full information on commissioning and maintenance plan are provided to help to ensure unit keeps running always in optimal conditions. ### **Compact Design** The refrigerant circuit layout has been redesigned and high efficiency exchangers been used to reduce the footprint and improve the transport and handling. Transition roofcurbs are available to fit in existing installations. # Accessories & options | | | C. J. | | Coolin | g only | | Н | eat pun | np | Cod | oling + į | gas hea | ting | Heat pu | mp + gas | + gas heating | | | | | | |---|---------------------|--------------------------|-----|--------|--------|-----|-----|---------|-----|-----|-----------|---------|------|---------|----------|---------------|--|--|--|--|--| | | | Code | 017 | 022 | 032 | 040 | 017 | 022 | 032 | 017 | 022 | 032 | 040 | 017 | 022 | 032 | | | | | | | Thermostat DPC-1 | | S603786044 | А | А | А | А | А | А | А | А | А | А | А | А | А | А | | | | | | | YNK2Open Gateway
BACnet / IP - JCI Metas | ys N2 | S606791244 | А | А | А | А | А | А | А | А | Α | А | А | А | А | А | | | | | | | YNK2Open Gateway
Modbus TCP / IP - JCI N | Metasys N2 | S606791245 | А | А | А | А | А | А | А | А | А | А | А | А | А | А | | | | | | | Dry bulb triple input economizer or | | S611752301 | 0 | 0 | | | 0 | 0 | | 0 | 0 | | | 0 | 0 | | | | | | | | motorized air damper v | vith rain hood | S611752311 | | | 0 | 0 | | | 0 | | | 0 | 0 | | | 0 | | | | | | | Enthalpy probes | | S613990081 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Indoor air quality senso | r | S606819964 | O/A | | | | | | Power Exhaust | | S611752302 | А | А | | | А | А | | А | А | | | А | А | | | | | | | | TOWER EXHIBUSE | | S611752312 | | | Α | Α | | | А | | | Α | Α | | | А | | | | | | | Barometric relief dampe | er and rain | S611752472 | Α | Α | | | Α | Α | | А | Α | | | А | Α | | | | | | | | hood | | S611752473 | | | А | А | | | А | | | Α | А | | | А | | | | | | | Facely air damage and a | -: (2) | S611752303 | А | А | | | Α | Α | | А | Α | | | А | А | | | | | | | | Fresh air damper and ra | ani 11000 (2) | S611752313 | | | А | А | | | А | | | А | А | | | А | | | | | | | Low ambient kit | | S611752381 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Destanded (a) | | S611752886 | А | А | | | А | А | | А | А | | | А | А | | | | | | | | Roofcurb adapter (3) | | S611752887 | | | А | А | | | А | | | А | А | | | А | | | | | | | | | S611752881 | Α | Α | | | Α | Α | | А | Α | | | А | А | | | | | | | | Fixed roof curb | | S611752882 | | | А | А | | | А | | | Α | Α | | | А | | | | | | | | | S611752883 | Α | Α | | | Α | Α | | А | Α | | | А | А | | | | | | | | Adjustable roof curb | | S611752884 | | | А | А | | | Α | | | Α | А | | | А | | | | | | | Dirty filter switch | Dirty filter switch | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Smoke detector | | S613995382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Fire detection thermost | at | S613903003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | S611752351 | 0 | 0 | | | 0 | 0 | | | | | | | | | | | | | | | Hot water coil | | S611752352 | | | 0 | 0 | | | 0 | | | | | | | | | | | | | | | 16 kW | S611752516 | 0 | 0 | | | 0 | 0 | _ | | | | | | | | | | | | | | | 16 kW | S611752616 | | Ŭ. | 0 | 0 | Ū | Ü | 0 | | | | | | | | | | | | | | Electric heaters | 25 kW | S611752525 | 0 | 0 | Ü | Ü | 0 | 0 | Ü | | | | | | | | | | | | | | Licetie fieders | 25 kW | S611752625 | Ü | Ü | 0 | 0 | Ü | Ü | 0 | | | | | | | | | | | | | | | 37 kW | S611752537 | | | 0 | 0 | | | 0 | | | | | | | | | | | | | | Propane conversion Kit | | S611752780 | | | U | U | | | U | А | А | А | А | А | А | А | | | | | | | Fropalie Conversion Kit | | S611752401 | 0 | 0 | | | 0 | 0 | | 0 | 0 | Α | Α | 0 | 0 | ^ | | | | | | | Filter kit F6 | | S611752401 | U | U | 0 | 0 | U | U | 0 | U | U | 0 | 0 | U | U | 0 | | | | | | | | | S611752402 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | | | | | | | Filter kit F7 | | | U | U | 0 | 0 | U | U | 0 | 0 | U | 0 | 0 | 0 | U | 0 | | | | | | | | | S611752412
S611752451 | 0 | 0 | U | U | 0 | 0 | U | 0 | 0 | U | U | 0 | 0 | 0 | | | | | | | Grill condenser coil pro | tection | | U | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | _ | 0 | U | 0 | | | | | | | | A caticity coats | Life | S611752452 | | | 0 | 0 | | | 0 | | | 0 | 0 | A . | | 0 | | | | | | | Antivibration mounting | KIT | S611752461 | A | A | А | А | A | A | А | A | A | А | А | A | A | А | | | | | | | Energy recovery | | S611752501 | А | А | | | A | А | | А | А | | | А | А | | | | | | | | | | S611752511 | | | А | А | | | А | | | А | А | | | А | | | | | | | Filter kit F6 for energy r | ecovery | S611755506 | 0 | 0 | | | 0 | 0 | | 0 | 0 | | | 0 | 0 | | | | | | | | | ÷ | S611755516 | | | 0 | 0 | | | 0 | | | 0 | 0 | | | 0 | | | | | | | Filter kit F7 for energy r | ecovery | S611752507 | 0 | 0 | | | 0 | 0 | | 0 | 0 | | | 0 | 0 | | | | | | | | | | S611752517 | | | 0 | 0 | | | 0 | | | 0 | 0 | | | 0 | | | | | | | Alarm relay board | | S606791243 | O/A | | | | | | Copper-copper coil | | Contact us | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | O=Option (factory fitted). A=Accessory (supplied loose). O/A=If you want this item factory fitted, precise it in the order form. (1) Energy recovery accessory includes: economizer, rain hood, indoor air quality sensor and G4 filters. (2) Fresh air damper can not be installed if economizer or motorized damper is fitted. (3) Transition roofcurbs to fit in D_IC/D_IG/B_IG existing installations (090-150 kbtu/h). # **ACTIVA** Rooftop ARC-ARG-ARH-ARD A complete range from 48 kW up to 84 kW #### **Features** - · High efficiency EER and COP - · Low noise level - All configurations: Cooling only, Cooling + gas, Heating, Heating + Gas - · BMS communication as standard (N2Open protocol) - · Energy recovery (enthalpy wheel) - EC Return fan - External HP & LP access - · Filters G4, F6 & F7 available - Tandem configuration (up to 52°C outdoor temperature) # ARC 045 BB Nomenclature B = Blue fin C = Copper fin (ask JCl) B = version Capacity range: 045 = 45 kW Product category: C = Cooling H = Heat pump G = Cooling & Gas D = Heat pump & Gas (Dual) Rooftop Activa series ## **ACTIVA Rooftop** #### ARC-ARG-ARH-ARD 045 to 090 BB #### Technical features (Preliminary Data for sizes 75 and 90) | Cooling only mode | ls | | ARC 045 BB | ARC 060 BB | ARC 075 BB | ARC 090 BB | |-------------------------------|-----------------------|------------------------|-------------|--------------|----------------|---------------| | Net cooling capacities | S | kW | 48 | 62 | 72 | 84 | | Power input | | kW | 16.0 | 23.0 | 30.0 | 36.0 | | SEER | | | 3.03 | 3,00 | 3.01 | 3.01 | | ηs,c | | | 118.1 | 116.9 | 117.1 | 117.2 | | Working range (full lo | ad / partial load) * | °C | | 7°C ~ 46°C / | -10°C ~ 52°C | | | Heat pump models | i | | ARH 045 BB | ARH 060 BB | ARH 075 BB | ARH 090 BB | | Net cooling capacities | S | kW | 48 | 62 | 72 | 84 | | Power input in cooling | g | kW | 17.0 | 20.0 | 28.0 | 36.0 | | Heating capacities (1) | | kW | 45.2 | 58.0 | 71.7 | 86.5 | | Power input in heating | g | kW | 16.0 | 19.0 | 27.0 | 33.0 | | SCOP | | | 3.19 | 3.10 | 3.05 | 3.15 | | ηs,h | | | 124.6 | 121.0 | 119.1 | 123.0 | | Working range (full lo | ad / partial load) * | °C | | -10°C ~ 46°C | / -10°C ~ 52°C | | | Cooling only + Gas | heating models | | ARG 045 BB | ARG 060 BB | ARG 075 BB | ARG 090 BB | | Net cooling capacities | S | kW | 48 | 62 | 72 | 84 | | Cooling power input | | kW | 16.0 | 23.0 | 30.0 | 36.0 | | Standard Heating cap | acities (1) | kW | 76.0 | 76.0 | 76.0 | 76.0 | | Natural gas 2ND-H, G | 520 | m³/h | 8.60 | 8.60 | 8.60 | 8.60 | | High Heating capaciti | es (1) | kW | 90.0 | 90.0 | 90.0 | 90.0 | | Natural gas 2ND-H, G | 520 | m³/h | 9.80 | 9.80 | 9.80 | 9.80
 | Working range (full lo | ad / partial load) ** | °C | | -15°C ~ 46°C | / -15°C ~ 52°C | | | eat pump + Gas heating models | | | ARD 045 BB | ARD 060 BB | ARD 075 BB | ARD 090 BB | | Net cooling capacities | S | kW | 48 | 62 | 72 | 84 | | Cooling power input | | kW | 17.0 | 20.0 | 28.0 | 36.0 | | Heating capacities (1) | | kW | 45.2 | 58.0 | 71.7 | 86.5 | | Power input in heating | g | kW | 16.0 | 19.0 | 27.0 | 33.0 | | Standard Heating cap | acities (1) | kW | 76.0 | 76.0 | 76.0 | 76.0 | | Natural gas 2ND-H, G | 520 | m³/h | 8.60 | 8.60 | 8.60 | 8.60 | | High Heating capaciti | es (1) | kW | 90.0 | 90.0 | 90.0 | 90.0 | | Natural gas 2ND-H, G | 520 | m³/h | 9.80 | 9.80 | 9.80 | 9.80 | | Working range (full lo | ad / partial load) ** | °C | | -15°C ~ 46°C | / -15°C ~ 52°C | | | Common character | ristics | | | | | | | Power supply | | | | 400V/3 | + N/ 50Hz | | | Main switch | | А | 50 | 63 | 80 | 80 | | Main cable | | Nbr. x mm ² | 5 x 10 | 5 x 16 | 5 x 25 | 5 x 25 | | Cable to thermostat | | Nbr. x mm ² | | 10 > | x 0.22 | | | Number of circuits / C | Compressor type | | | 1 (tandem |) / 2 x scroll | | | | rflow | m³/h | 8 500 | 11 500 | 13 500 | 16 000 | | at nominal airflow Po | ower input | kW | 3 | 4 | 5.5 | 7.5 | | | eight | mm | 1 316 | 1 316 | 1 367 | 1 367 | | | ength | mm | 3 180 | 3 180 | 3 495 | 3 495 | | | - | mm | 2 337 | 2 337 | 2 337 | 2 337 | | De | epu i | | | | | | | De
Nett weight ARC / AF | | kg | 900 / 1 010 | 945 / 1 055 | 1 118 / 1 228 | 1 142 / 1 252 | All the data are at EUROVENT conditions with 400V/3+N/50Hz. Cooling: Entering indoor coil temp. 27°C / 19°C WB and outdoor temperature 35°C – Heating: Entering indoor coil temp. 20°C and outdoor temperature 7°C / 6°C WB (1) Add indoor fan motor consumption to know total heating capacity. * With Premium kit (full load / partial load): $-10^{\circ}\text{C} \sim 50^{\circ}\text{C}$ / $-10^{\circ}\text{C} \sim 52^{\circ}\text{C}$ ** With Premium kit (full load / partial load): $-20^{\circ}\text{C} \sim 50^{\circ}\text{C}$ / $-20^{\circ}\text{C} \sim 52^{\circ}\text{C}$ #### Codes | Cooling only models | ARC 045 BB | ARC 060 BB | ARC 075 BB | ARC 090 BB | |-----------------------------------|------------|------------|------------|------------| | Cooling only models | S661752149 | S661752165 | S661752175 | S661752195 | | Heat nump models | ARH 045 BB | ARH 060 BB | ARH 075 BB | ARH 090 BB | | Heat pump models | S661752147 | S661752167 | S661752177 | S661752197 | | Cooling only + Gas heating models | ARG 045 BB | ARG 060 BB | ARG 075 BB | ARG 090 BB | | Cooling only + Gas heating models | S661752146 | S661752166 | S661752176 | S661752196 | | Heat women's Con booting models | ARD 045 BB | ARD 060 BB | ARD 075 BB | ARD 090 BB | | Heat pump + Gas heating models | S661752148 | S661752168 | S661752178 | S661752198 | | Thermostat | | | | | | to be ordered separately | | DP | C-1 | | Manufacturer reserves the rights to change specifications without prior notice. # Activa rooftop details & features #### Condenser fan New condenser fans with high technology blades and outdoor bell that reduce the turbulences in the air and therefore increase the efficiency and improve the noise level performance. #### Tandem scroll compressors Tandem compressors configuration allows the unit to operate at partial load (only with one compressor) with higher efficiency and increases the working range up to +52°C ambient temperature. #### PCB board The YKN2Open board keeps same features and benefits as YKlon V3 and adds new logical to control the tandem circuit, the new options (heat recovery, return fan) and the possibility to communicate with BMS system as standard (only N2Open protocol). #### Return fan Located in a special roof curb underneath the rooftop, it works simultaneously with the indoor fan in order to balance the amount of air supplied to and removed from the space. It is the best suited for systems with high return path static pressures. Also, incorporates EC technology and a differential pressure gauge to easy set up and maintain automatically the working point in the installation. #### Energy recovery system It is the preferred solution to solve two conflicting requirements: reduce running costs (increase efficiency) while maintaining the indoor air quality at high levels (through ventilation). An enthalpy rotary wheel retains the energy from the exhaust air and transmits it to the fresh air stream that is being supplied in the conditioned space. The material used is manufactured with the latest technology to increase the energy transmission in both sensible and latent heat. The wheel is split into 6 portions that can be easily removed for cleaning. V-Coils Made in blue fin (or in copper for harsh conditions under special request), increases the heat exchange surface for a given rooftop footprint. The floor pan is sloped for easy condensates drainage. Filter options Washable air filters: G4 class filter (gravimetric efficiency above 90%) and M1 fire class, it comes with galvanized sheet metal frame that allows easy cleaning and replacement. Delivered as standard. Filter kit F7: for Average Opacimetric efficiency (em) 80% ≤ em ≤ 90% As per EN 779 # Accessories & options #### Accessories & options | | | Code | | Coolir | g only | | | Heat | pump | | |------------------------------|------------------------------|--------------------------|-----|--------|--------|-----|-----|------|------|-----| | | | Code | 45 | 60 | 75 | 90 | 45 | 60 | 75 | 90 | | Thermostat DPC-1 | | S603786044 | А | А | А | А | А | А | А | А | | YNK2Open Gateway BAC | | S606791244 | А | А | А | А | А | А | А | А | | YNK2Open Gateway Modbu | ıs TCP / IP - JCI Metasys N2 | S606791245 | Α | А | А | А | А | А | А | А | | Dry bulb triple input ecor | nomizer or motorized air | S661752301 | 0 | 0 | | | 0 | 0 | | | | damper with rain hood | | S661752311 | | | 0 | 0 | | | 0 | 0 | | Enthalpy probes | | S613990081 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Indoor air quality sensor | | S606819964 | А | А | А | А | А | А | А | А | | Power Exhaust | | S661752302 | А | А | | | А | А | | | | | | S661752322 | | | А | А | | | А | А | | Barometric relief damper | and rain hood | S613990472 | А | А | | | А | А | | | | <u> </u> | | S613990473 | | | А | А | | | А | А | | Fresh air damper and rain | n hood (2) | S661752303 | Α | А | | | А | А | | | | <u> </u> | | S661752323 | | | А | А | | | А | А | | | 4 kW | S611990401 | 0 | | | | 0 | | | | | High pressure drive | 5.5 kW | S611990601 | | 0 | 0 | | | 0 | 0 | | | | 7.5 kW (IE3) | S611990701 | | | 0 | 0 | | | 0 | 0 | | | 11 kW (IE3) | S611990903 | ^ | ^ | 0 | 0 | ^ | ^ | ^ | 0 | | Soft start indoor fan | 5.5 kW | S606744690 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 11.5 kW | S606744691 | 0 | | 0 | 0 | 0 | | 0 | 0 | | Premium Kit (LAK include | ed) * | S613118302 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | S613118303 | Δ. | 0 | 0 | 0 | Α | 0 | 0 | 0 | | Side duct flanges | | S613991482
S613991483 | А | А | ۸ | А | A | А | ٨ | Λ | | | | | ٨ | Λ | А | А | ۸ | Δ. | А | А | | Fixed roof curb | | S613991884 | А | А | А | А | A | Α | ٨ | А | | | | S613991885
S613992081 | A | А | А | А | А | A | А | А | | Adjustable roof curb | | S613992081
S613992082 | А | A | А | А | A | A | A | А | | Dirty filter switch | | S613992082
S613990085 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Smoke detector | | S613995382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fire detection thermosta | t | S613903003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Hot water coil | | S611083351 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | not water con | 12 kW | S611761584 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 25 kW | S611762284 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Electric heaters | 37 kW | S611763385 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 50 kW | S611764485 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Propane conversion Kit | | S611801780 | A | A | A | А | A | A | A | А | | High heat gas conversion | ı kit | S611803080 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | S611300401 | 0 | 0 | | | 0 | 0 | | | | Filter kit F6 | | S611300701 | | | 0 | | | | 0 | | | | | S611300901 | | | | 0 | | | | 0 | | | | S611300402 | 0 | 0 | | | 0 | 0 | | | | Filter kit F7 | | S611300702 | | | 0 | | | | 0 | | | | | S611300902 | | | | 0 | | | | 0 | | | | S661752304 | 0 | | | | 0 | | | | | Grill condenser coil prote | ection | S661752324 | | 0 | | | | 0 | | | | | | S661752314 | | | 0 | 0 | | | 0 | 0 | | Antivibration mounting k | it | S613990411 | А | А | А | А | А | А | А | А | | Return fan bottom duct | | S613993042 | А | А | | | А | А | | | | Trocarrian bottom adde | | S613993072 | | | А | А | | | А | А | | | Q6000 (1) | S611994511 | А | А | | | А | А | | | | Energy recovery | Q3000 (1) | S611994512 | Α | А | | | А | А | | | | 5, , | Q9000 (1) | S611997511 | | | A | A | | | A | A | | | Q4500 (1) | S611997512 | | | А | А | | | А | А | | Filter kit F6 for energy re- | covery | S611994506 | 0 | 0 | _ | | 0 | 0 | _ | | | | · | S611997506 | | | 0 | 0 | _ | | 0 | 0 | | Filter kit F7 for energy re | covery | S611994507 | 0 | 0 | | | 0 | 0 | | | | | | S611997507 | 0/1 | 011 | 0 | 0 | 011 | 011 | 0 | 0 | | Alarm relay board | | S606791243 | O/A | Copper-copper coil | | Contact us | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | O=Option (factory fitted). A=Accessory (supplied loose). O/A=If you want this item factory fitted, precise it in the order form. (1) = Energy recovery accessory includes: economizer, rain hood, indoor air quality sensor and G4 filters. ⁽²⁾ Fresh air damper can not be installed if economizer or motorized damper is fitted. * Features: increased efficiency by 0.15, extended max outdoor temperature up to +50°C at full load, Low ambient kit. #### Accessories & options | | | Code | | Cooling + | gas heating | | | Heat pump | + gas heatin | g | |-------------------------------|-----------------------------|--------------------------|-----|-----------|-------------|-----|-----
-----------|--------------|-----| | | | Coue | 45 | 60 | 75 | 90 | 45 | 60 | 75 | 90 | | Thermostat DPC-1 | | S603786044 | А | А | А | А | А | А | А | А | | YNK2Open Gateway BACı | | S606791244 | А | А | А | А | А | А | А | А | | YNK2Open Gateway Modbu | s TCP / IP - JCI Metasys N2 | S606791245 | А | А | А | А | А | А | А | А | | Dry bulb triple input econ | omizer or motorized air | S661752301 | 0 | 0 | | | 0 | 0 | | | | damper with rain hood | | S661752311 | | | 0 | 0 | | | 0 | 0 | | Enthalpy probes | | S613990081 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Indoor air quality sensor | | S606819964 | А | А | А | А | А | А | А | А | | Danier Erland | | S661752302 | А | А | | | А | А | | | | Power Exhaust | | S661752322 | | | А | А | | | А | А | | Daniel danie | and arise beaut | S613990472 | А | А | | | А | А | | | | Barometric relief damper | and rain nood | S613990473 | | | А | А | | | А | А | | Freely air demonstrated value | haad (2) | S661752303 | А | А | | | А | А | | | | Fresh air damper and rair | 1 11000 (2) | S661752323 | | | А | А | | | А | А | | | 4 kW | S611990401 | 0 | | | | 0 | | | | | 12.1 | 5.5 kW | S611990601 | | 0 | | | | 0 | | | | High pressure drive | 7.5 kW (IE3) | S611990701 | | | 0 | | | | 0 | | | | 11 kW (IE3) | S611990903 | | | | 0 | | | | 0 | | | 5.5 kW | S606744690 | 0 | 0 | 0 | | 0 | 0 | 0 | | | Soft start indoor fan | 11.5 kW | S606744691 | | | 0 | 0 | | | 0 | 0 | | | | S613118302 | 0 | | | | 0 | | | | | Premium Kit (LAK include | d) * | S613118303 | - | 0 | 0 | 0 | | 0 | 0 | 0 | | | | S613991482 | А | A | - | | А | A | | | | Side duct flanges | | S613991483 | | | А | А | | | А | А | | | | S613991884 | А | А | 11 | | А | А | | | | Fixed roof curb | | S613991885 | | | А | А | | | А | А | | | | S613992081 | А | А | | | A | A | 7, | | | djustable roof curb | | S613992082 | | 7. | А | А | 7. | | А | А | | pirty filter switch | | S613990085 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Smoke detector | | S613995382 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Fire detection thermostat | • | S613903003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Hot water coil | <u> </u> | S611083351 | | Ŭ. | Ü | | - U | J | Ŭ. | | | riot water con | 12 kW | S611761584 | | | | | | | | | | | 25 kW | S611762284 | | | | | | | | | | Electric heaters | 37 kW | S611763385 | | | | | | | | | | | 50 kW | S611764485 | | | | | | | | | | Propane conversion Kit | JO KVV | S611801780 | А | А | А | А | A | А | A | А | | High heat gas conversion | kit | S611803080 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TIISTI TICUL SUS COTIVETSION | NIC | S611300401 | 0 | 0 | Ü | | 0 | 0 | U | O | | Filter kit F6 | | S611300701 | | 0 | 0 | | 0 | 0 | 0 | | | Tiller Kit I O | | S611300701
S611300901 | | | Ü | 0 | | | U | 0 | | | | S611300402 | 0 | 0 | | | 0 | 0 | | U | | Filter kit F7 | | S611300702 | 0 | U | 0 | | U | 0 | 0 | | | THECH KICT / | | S611300702
S611300902 | | | Ü | 0 | | | U | 0 | | | | S661752304 | 0 | | | 0 | 0 | | | U | | Grill condenser coil prote | ction | S661752324 | 0 | 0 | | | U | 0 | | | | dilli condensei coli prote | CUOII | S661752314 | | U | 0 | 0 | | U | 0 | 0 | | Antivibration mounting ki | + | S613990411 | А | A | A | A | А | А | A | A | | Anuvibration mounting ki | L | | | | А | А | | | А | А | | Return fan bottom duct | | S613993042 | А | А | ٨ | ٨ | А | А | Α | Λ | | | 00000 (1) | S613993072 | Α. | Α. | А | А | Α. | | А | А | | | Q6000 (1) | S611994511 | A | A | | | A | A | | | | Energy recovery | Q3000 (1) | S611994512 | А | А | 4 | | А | А | Α. | | | | Q9000 (1) | S611997511 | | | A | A | | | A | A | | | Q4500 (1) | S611997512 | | | А | А | | _ | А | А | | Filter kit F6 for energy red | covery | S611994506 | 0 | 0 | | | 0 | 0 | | | | | | S611997506 | | | 0 | 0 | | _ | 0 | 0 | | Filter kit F7 for energy red | coverv | S611994507 | 0 | 0 | | | 0 | 0 | | | | | , | S611997507 | | | 0 | 0 | | | 0 | 0 | | Alarm relay board | | S606791243 | O/A | Copper-copper coil | | Contact us | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | O=Option (factory fitted). A=Accessory (supplied loose). O/A=If you want this item factory fitted, precise it in the order form. (1) = Energy recovery accessory includes: economizer, rain hood, indoor air quality sensor and G4 filters. (2) Fresh air damper can not be installed if economizer or motorized damper is fitted * Features: increased efficiency by 0.15, extended max outdoor temperature up to +50°C at full load, Low ambient kit. # Large ACTIVA Rooftop ARC-ARH 100 to 175 AB A complete range from 108 kW up to 169 kW #### **Features** - · High efficiency EER and COP - Quiet operation - · Configurations: Cooling only and Heating - BMS communication as standard (N2Open protocol) - · Partial loads - Extended working range (up to 52°C outdoor temperature) - F6 & F7 filters available as option (G4 standard) - · Energy recovery (ask JCI for availability) ## Large ACTIVA Rooftop #### ARC-ARH 100 to 175 AB #### Technical features | Cooling only mode | els | | ARC 100 AB | ARC 125 AB | ARC 150 AB | ARC 175 AB | | | | | | |------------------------|-----------------------|------------------------|-----------------|----------------|----------------|------------|--|--|--|--|--| | Net cooling capacitie | S | kW | 108.1 | 121.8 | 149.3 | 169.0 | | | | | | | Power input | | kW | 34 | 41 | 59 | 64 | | | | | | | SEER | | | 4.95 | 4.58 | 3.72 | 3.29 | | | | | | | ηs,c | | | 195.0 | 180.1 | 145.7 | 128.8 | | | | | | | Working range (full lo | oad / partial load) * | °C | | 7°C ~ 46°C / | -10°C ~ 52°C | | | | | | | | Heat pump models | 5 | | ARH 100 AB | ARH 125 AB | ARH 150 AB | ARH 175 AB | | | | | | | Net cooling capacitie | S | kW | 108.1 | 121.8 | 149.3 | 169.0 | | | | | | | Power input in coolin | g | kW | 34 | 41 | 59 | 64 | | | | | | | Heating capacities (1) |) | kW | 104.6 | 118.4 | 147.0 | 167.0 | | | | | | | Power input in heatir | ng | kW | 33 | 37 | 53 | 61 | | | | | | | SCOP | | | 3.58 | 3.44 | 3.44 | 3.44 | | | | | | | ηs,h | | | 140.2 | 134.5 | 134.6 | 134.5 | | | | | | | Working range (full lo | oad / partial load) * | °C | | -10°C ~ 46°C / | / -10°C ~ 52°C | | | | | | | | Common characte | ristics | | | | | | | | | | | | Power supply | | | 400V / 3 / 50Hz | | | | | | | | | | Main switch | | А | 100 | 125 | 160 | 200 | | | | | | | Main cable | | Nbr. x mm² | 3 x 35 | 3 x 50 | 3 x 50 | 3 x 70 | | | | | | | Cable to thermostat | | Nbr. x mm ² | | 10 x | 0,22 | | | | | | | | Number of circuits / 0 | Compressor type | | | 2 (tandem) | / 4 x scroll | | | | | | | | | irflow | m³/h | 19 000 | 21 000 | 27 000 | 31 000 | | | | | | | at nominal airflow Po | ower input | kW | 3.0 | 3.3 | 8.3 | 9.1 | | | | | | | Н | eight | mm | 2 1 | 42 | 2 1 | .42 | | | | | | | Nett dimensions Le | ength | mm | 4 0 | 36 | 5 (| 085 | | | | | | | D | epth | mm | 2 2 | 50 | 2 2 | 250 | | | | | | | Nett weight ARC | | kg | 1 737 | 1 744 | 2 074 | 2 090 | | | | | | | Nett weight ARH | | kg | 1 765 | 1 772 | 2 135 | 2 150 | | | | | | All the data are at EUROVENT conditions with 400V/3+N/50Hz. Cooling: Entering indoor coil temp. 27°C / 19°C WB and outdoor temperature 35°C – Heating: Entering indoor coil temp. 20°C and outdoor temperature 7°C / 6°C WB (1) Add indoor fan motor consumption to know total heating capacity. * With Premium kit (full load / partial load): -10°C ~ 50°C / -10°C ~ 52°C #### Codes | Cooling only models | ARC 100 AB | ARC 125 AB | ARC 150 AB | ARC 175 AB | | | | | | | |--------------------------|------------|-----------------------|------------|------------|--|--|--|--|--|--| | Cooling only models | S661852400 | S661852420 | S661852450 | S661852480 | | | | | | | | Heat array we dele | ARH 100 AB | ARH 100 AB ARH 125 AB | | ARH 175 AB | | | | | | | | Heat pump models | S661852403 | S661852423 | S661852453 | S661852483 | | | | | | | | Thermostat | | | | | | | | | | | | to be ordered separately | DPC-1 | | | | | | | | | | # Large Activa rooftop details ## Accessories & options | | | Cada | | Coolir | ng only | | Heat pump | | | | | |--|----------------|------------|-----|--------|---------|-----|-----------|-----|-----|-----|--| | | | Code | 100 | 125 | 150 | 175 | 100 | 125 | 150 | 175 | | | Thermostat DPC-1 | | S603786044 | А | А | А | А | А | А | А | А | | | YNK2Open Gateway
BACnet / IP - JCI Metas | ys N2 | S606791244 | А | А | А | А | А | А | А | А | | | YNK2Open Gateway
Modbus TCP / IP - JCI Me | tasys N2 | S606791245 | А | А | А | А | А | А | А | А | | | Dry bulb triple input ec | onomizer or | S611751011 | 0 | 0 | | | 0 | 0 | | | | | motorized air damper v | with rain hood | S611751511 | | | 0 | 0 | | | 0 | 0 | | | Enthalpy probes | | S613990081 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Indoor air quality senso | r | S606819964 | O/A | | Power Exhaust | | S611751021 | А | А | | | А | А | | | | | | | S611751521 | | | А | А | | | А | А | | | Barometric relief damp | er | S611751031 | А | А | | | A | А | | | | | <u> </u> | | S611751531 | | | А | А | | | А | А | | | Fresh air damper | | S613751021 | А | А | | | A | А | | | | | | | S613751521 | | | А | А | | | А | А | | | | 7.5 kW (IE3) | S611751091 | 0 | 0 | | | 0 | 0 | | | | | High pressure drive | 11 kW (IE3) | S611751093 | 0 | 0 | | | 0 | 0 | | | | | | 5.5 kW (IE3) | S611751591 | | | 0 | | | | 0 | | | | | 7.5 kW (IE3) | S611751592 | | | 0 | 0 | | | 0 | 0 | | | Side duct supply | | S611751061 | 0 | 0 | | | 0 | 0 | | | | | | | S611751561 | | | 0 | 0 | | | 0 | 0 | | | Soft start indoor fan 🔝 | 5.5 kW | S606744690 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Soft start indoor fan 11.5 kW | | S606744691 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Premium Kit (LAK inclu | ded) * | S611751071 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Fixed roof curb | | S611751081 | А | А | | | А | А | | | | | | | S611751581 | | | А | А | | | А | А | | | Adjustable roof curb | | S611751082 | А | А | | | А | А | | | | | | | S611751582 | | | А | А | | | А | А | | | Dirty filter switch | | S613990085 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Smoke detector | | S613995382 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Fire detection thermos | tat | S613903003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Hot water coil | | S611751051 | 0 | 0 | | | 0 | 0 | | | | | | | S611751551 | | | 0 | 0 | | | 0 | 0 | | | | 37 kW | S611751037 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Electric heaters | 50 kW | S611751050 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 60 kW | S611751060 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Filter kit F6 | | S611751046 | 0 | 0 | | | 0 | 0 | | | | | | | S611751546 | | | 0 | 0 | | | 0 | 0 | | | Filter kit F7 | | S611751047 | 0 | 0 | | | 0 | 0 | | | | | | | S611751547 | | _ | 0 | 0 | | | 0 | 0 | | | Grill condenser coil pro | tection | S611751041 | 0 | 0 | | | 0 | 0 | | | | | · | | S611751541 | | | 0 | 0 | | | 0 | 0 | | | Antivibration mounting | | S613751011 | 0 | 0 | | | 0 | 0 | | | | | Antivibration mounting | kit 150/175 | S613751511 | | 2.1 | 0 | 0 | 2.1 | | 0 | 0 | | | Alarm relay board | | S606791243 | O/A | | Copper-copper coil | | Contact us | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | O=Option (factory fitted). A=Accessory (supplied loose). O/A=If you want this item factory fitted, precise it in the order form. (1) = Energy recovery accessory includes: economizer, rain hood, indoor air quality sensor and G4 filters. * Features: increased efficiency by 0.15, extended max outdoor temperature up to +50°C at full load, Low ambient kit. **準YORK**® # Rooftop & Large Rooftop accessories & options #### Triple input economizer This system utilizes 3 probes: Return Air, Outdoor Air and Supply Air. The Outdoor Air damper and the Return Air dampers are mechanically interconnected in order to provide the same airflow at the coil inlet, with a single damper motor. The PCB compares sensor values and modulates the dampers providing maximum efficiency of the economiser system (free cooling) and comfort (Supply Air > 12°C). Combined with the air quality sensor, your payback will be ensured within few months. The rain hood is painted to match the basic unit and aluminium mesh prefilter prevents water penetration. #### **Indoor air quality** This sensor measures concentrations of pollutant gases, such as tobacco smoke, human body odours, kitchen odours, carbon monoxide, etc... It automatically overrides the economizer when pollutant levels rise above preset limits. A shorting plug will set the algorithm to acceptable, good or very good air quality. This VOC sensor (Volatile Organic Compounds) sends an ON/OFF signal to the control PCB. The YKN2Open will then adjust the fresh air damper, optimising indoor air quality and minimising the energy consumption. #### Motorised outdoor air damper Equipped with the same dampers as the economizer, the Return Air probe is not used. Outdoor air damper opens to pre-set position whenever the indoor fan is operating (selected from the thermostat, the indoor fan can be activated with the compressor or to operate continuously) and will drive fully closed when the indoor fan shuts down. The rain hood is painted to match the basic unit and aluminium mesh pre-filter prevents water penetration. #### Premium Kit - Low ambient control All our rooftops are designed to work in cooling mode down to 7°C ambient temperatures. Although this working range suits most applications, the units can operate correctly down to -18°C with optional Premium Kit. The Premium Kit option consists on an EC condensing fan that will allow us to increase the airflow at reduced consumption. Also we have condensing and evaporating pressure control that will extend our operating limits. It's estimated an increased efficiency by +0.15% in EER and COP. #### **Enthalpy sensors** To control the economizer in humid areas, or when indoor air humidity needs to remains dry, you should select enthalpy regulation. Enthalpy sensors will be used with the triple input economizer. #### High pressure drive The high pressure drive will increase the supply fan performance for applications requiring greater air flow and/ or static pressure. Please consult technical guide for more information. #### Barometric relief damper This accessory can be used to relieve internal air pressure on units equipped with triple input economiser or motorised air damper but no power exhaust. When the rooftop is working in free cooling or introducing fresh air, the damper opens to relieve over pressure from the return air section. This accessory is comprised of a rain hood, a protective grille and a fully assembled damper. #### **Power Exhaust** Used to mechanically relieve internal air pressure from the Return Air section and ensure efficient fresh air introduction on units equipped with triple input economiser or motorised air damper. The power exhaust fan motor works when enough Outdoor Air is blowing into the room and if Outdoor Air temperature is acceptable (12°C < t° < #### Fresh air damper and rain hood The most cost effective method with a complete rain hood and a fixed damper that can be adjusted to provide approximately 10, 15 or 25% of fresh air. #### Smoke detector The smoke detector is protecting the AHU but must not be used to ensure a full building protection against smoke danger. If smoke is detected the AHU is shutdown (lockout). A manual reset is necessary. #### Fire detection thermostat This fire detection thermostat is protecting the AHU but must not be used to ensure a full building protection against fire danger. The standard AHU is protected as standard with a Supply Air probe that shuts the unit down (lockout) when temperature exceeds 80°C. The electro-mechanical fire detection thermostat is used to fulfil specific local requirement. A manual reset is necessary. #### Dirty filter switch Ensures that clean air is being supplied, advises when maintenance is required to prevent excessive depression and ensures water integrity of the AHU. These are the main advantages of filter dirty switch. Connected with the DPC-1 thermostat, the filter icon will appear on the thermostat screen when a filter change is required. #### Fixed and adjustable roof curbs Ideal for down-flow applications, it is a great help for installation allowing duct connections, electrical connection and weatherproofing between the roofcurb and the roof of the building. Shipped in kit form, it also gives sufficient height for condensate trap operation. The adjustable roof curbs have the same benefits as the fixed roof curb, it allows the rooftop to be levelled on a roof with up to 7° slope (4%). #### Hot water coil with control The hot water coil and his control are always fitted, wired and factory tested. Located in the supply air section, side or bottom duct connection is possible without any modification. Complete with an anti-frost thermostat, the PCB will activate the modulated valve (24V supply, 0 – 10V modulating signal) in order to get the best comfort. A jumper will allow using hot water coil as 1st heating stage. #### Side duct flanges It's an optional (factory fitted) required when rooftops from sizes 45-175 need to work with horizontal air configuration. It's not required for models 17 to 40. Composed of easy to install sheet metal panels to allow ductwork connections on the side of the AHU for horizontal return air and/or supply air. #### Electric heaters Available on cooling only and Heat pump units, the electric heater is protected with two overheats per element. When the overheat operates, there is a lock out of the faulty electric heater stage and the PCB starts automatically another heat stage. #### Kit conversion propane This kit comprises replacement burner, pilot injectors and all necessary instructions for converting the natural gas burner to propane gas. The nominal pressure of the propane gas should be 37 mbar. #### High heat gas This kit comprises replacement burner injectors and all necessary instructions to provide high heat capacity for gas rooftop. #### Energy recovery Attached to the return air box of the rooftop, a rotary enthalpy wheel retrieves the energy of the exhausted air and transmits it to the fresh air intake. A special material used in the wheel allows that latent heat as well as sensible heat are transmitted. #### Antivibration mounting kit It is composed by a set of stainless steel springs, to be assembled underneath the rooftop in a specific position. Their installation avoids the potential vibration transmission of the equipment to the building and reduces therefore the noise level (compressors have their own shock absorbers delivered as standard). #### Indoor fan soft start Compact control unit with a motor with AC semiconductors, designed for soft starting and stopping of three-phase motors for centrifugal fans. The starting time, the stopping time and the initial torque are adjusted by mean of independent potentiometers. #### Return fan Used to overcome high return path pressure drops, works in series with the indoor fan to maintain the air pressure of the conditioned space within acceptable levels. (Only available in models ARx 45-90). #### Grill condenser protection Metallic frame painted with oven-baked polymerized paint (800h salt spray resistance) to protect the fins of the coils from external damages. #### Air filters G4, F6 and F7 filters are available to purify the air in the room. M1 fire class and manufactured in sheet metal frame, they are easy to install and clean. # VITALITY Split Rooftop VIRSAC / VIRSAH 20 to 90 AB A complete range from 19.1 kW up to 86.1 kW #### **Features** - Split rooftop for installation where space is at a premium - $\boldsymbol{\cdot}$ Available with energy efficient axial fan on outdoor unit - · YKN2open board - High technology fan blades increases efficiency and reduces noise level - Service valves - · Economizer or motorized damper - · Return fan - · Indoor air quality - · Hot water coil and control - · Scroll compressor with crankcase heater - · Digital thermostat DPC-1 included ## **VITALITY Split Rooftop** #### VIRSAC / VIRSAH 20 to 90
AB #### Technical features | COMPLETE MODEL | | | VIRSAC20AB | VIRSAC25AB | VIRSAC30AB | VIRSAC45AB | VIRSAC60AB | VIRSAC75AB | VIRSAC90AB | |---|---------------|-----------------------|------------|------------|------------|------------------|---------------|--------------|--------------| | COMPLETE MODEL | | | VIRSAH20AB | VIRSAH25AB | VIRSAH30AB | VIRSAH45AB | VIRSAH60AB | VIRSAH75AB | VIRSAH90AB | | INDOOR UNITS | | | | | | | | | | | Cooling only and He | eat pump | VIR | 25 | AB | 40AB | 45AB | 60AB | 75AB | 90AB | | OUTDOOR UNITS | | | | | | | | | | | Cooling only models | s | VAC | 20AB | 25AB | 30AB | 45AB | 60AB | 75AB | 90AB | | Cooling capacities | | kW | 19.10 | 23.00 | 28.80 | 42.90 | 54.00 | 72.30 | 86.10 | | Power input in cooling | | kW | 5.60 | 6.99 | 9.60 | 13.53 | 18.60 | 23.09 | 28.60 | | SEER | | | 3.49 | 3.30 | 3.01 | 3.32 | 3.10 | 3.21 | 3.25 | | ηs,c | | | 136.7 | 129.0 | 117.5 | 129.6 | 121.2 | 125.4 | 126.9 | | Refrigerant charge on for 7 m piping length | site | kg | 12 | 12 | 12.5 | 2 x 11 | 2 x 11.5 | 2 x 15.5 | 2 x 15 | | Heat pump models | | VAH | 20AB | 25AB | 30AB | 45AB | 60AB | 75AB | 90AB | | Cooling capacities | | kW | 19.10 | 23.00 | 28.80 | 42.90 | 52.10 | 72.30 | 86.10 | | Power input in cooling | | kW | 5.60 | 6.99 | 9.60 | 13.53 | 18.60 | 23.09 | 28.60 | | Heating capacities | | kW | 21.20 | 25.20 | 31.90 | 44.80 | 59.40 | 81.00 | 93.10 | | Power input in heating | | kW | 4.94 | 6.73 | 8.41 | 12.69 | 17.06 | 22.13 | 28.82 | | SCOP | | | 2.97 | 2.96 | 2.96 | 3.03 | 3.02 | 2.98 | 2.96 | | ns,h | | | 115.8 | 115.4 | 115.5 | 118.2 | 117.9 | 116.2 | 115.4 | | Refrigerant charge on for 7 m piping length | site | kg | 12 | 12 | 12.5 | 2 x 11 | 2 x 11.5 | 2 x 15.5 | 2 x 15 | | Power supply | | | | | | 400V/3 + N/ 50Hz | | | | | Nominal / Starting curi | ent | А | 8.5 / 74 | 11.8 / 95 | 15 / 118 | 2 x 12 / 95 | 2 x 15 / 118 | 2 x 19 / 140 | 2 x 25 / 198 | | Main switch (1) | | А | 20 | 25 | 32 | 50 | 63 | 80 | 100 | | Main cable to the outd | loor unit (1) | Nbr x mm ² | 5 x 4 | 5 x 4 | 5 x 6 | 5 x 10 | 5 x 16 | 5 x 25 | 5 x 35 | | Interconnecting cable | (1) | Nbr x mm ² | 4 x 1.5 | 4 x 2.5 | | Cable to standard ther | mostat (2) | Nbr x mm² | | | | 10 x 0.22 | | | | | | | Suction | 1-1/8" | 1-1/8" | 1-1/8" | 2 x 1-1/8" | 2 x 1-1/8" | 2 x 1-3/8" | 2 x 1-3/8" | | Insulated refrigerant pi | ping | Liquid | 1/2" | 1/2" | 5/8" | 2 x 1/2" | 2 x 5/8" | 2 x 7/8" | 2 x 7/8" | | | Airflow | m³/h | 4 590 | 4 590 | 7 500 | 9 000 | 10 500 | 13 000 | 16 000 | | Evaporator fan VIR | Standard ESP | Pa | 1 | 72 | 153 | 150 | 178 | 170 | 240 | | at nominal airflow (3) | ESP with HSD | Pa | 21 | 67 | 242 | 203 | 277 | 289 | 399 | | | ESP with HSDM | Pa | 21 | 67 | 242 | 203 | 277 | 289 | 399 | | | Height | mm | 1 230 | 1 230 | 1 382 | 1 378 / 1 429 | 1 378 / 1 429 | 1 534 | 1 534 | | Nett dimensions
outdoor VAC / VAH | Length | mm | 882 | 882 | 882 | 1 627 | 1 627 | 1 627 | 1 627 | | outdoor VAC / VAIT | Depth | mm | 1 354 | 1 354 | 1 354 | 1 453 | 1 453 | 2 099 | 2 099 | | | Height | mm | 5! | 92 | 665 | 764 | 764 | 838 | 838 | | Nett dimensions
indoor VIR | Length | mm | 13 | 60 | 1740 | 2240 | 2240 | 2653 | 2653 | | INGOOF VIIX | Depth | mm | 7: | 85 | 785 | 772 | 772 | 892 | 892 | | Massachala | VAC / VAH | kg | 227 | 228 | 250 | 470 | 483 | 610 | 610 | | Nett weight | VIR | kg | 1: | 28 | 173 | 223 | 223 | 310 | 312 | ⁽¹⁾ For information only. These should be checked for compliance with local regulations depending also on installation and conductor type. #### Please note indoor and outdoor units can no longer be purchased as individual items, they can only be supplied as a matching pair to comprise the Split Rooftop system. Vitality Split Rooftop systems comprise of following matched pairs: | CODES | PRODUCT | OLD PRODUCT | CODES | PRODUCT | OLD PRODUCT | |------------|-----------------------|--------------------------------|------------|-----------------------|--------------------------------| | S661522073 | VIRSAC20AB (Blue fin) | VAC20AB + VIR 25 AB (Blue fin) | S662532073 | VIRSAH20AB (Blue fin) | VAH20AB + VIR 25 AB (Blue fin) | | S661522573 | VIRSAC25AB (Blue fin) | VAC25AB + VIR 25 AB (Blue fin) | S662532573 | VIRSAH25AB (Blue fin) | VAH25AB + VIR 25 AB (Blue fin) | | S661523073 | VIRSAC30AB (Blue fin) | VAC30AB + VIR 40 AB (Blue fin) | S662533073 | VIRSAH30AB (Blue fin) | VAH30AB + VIR 40 AB (Blue fin) | | S661524673 | VIRSAC45AB (Blue fin) | VAC45AB + VIR 45 AB (Blue fin) | S662534673 | VIRSAH45AB (Blue fin) | VAH45AB + VIR 45 AB (Blue fin) | | S661526173 | VIRSAC60AB (Blue fin) | VAC60AB + VIR 60 AB (Blue fin) | S662536173 | VIRSAH60AB (Blue fin) | VAH60AB + VIR 60 AB (Blue fin) | | S661527673 | VIRSAC75AB (Blue fin) | VAC75AB + VIR 75 AB (Blue fin) | S662537673 | VIRSAH75AB (Blue fin) | VAH75AB + VIR 75 AB (Blue fin) | | S661529173 | VIRSAC90AB (Blue fin) | VAC90AB + VIR 90 AB (Blue fin) | S662539173 | VIRSAH90AB (Blue fin) | VAH90AB + VIR 90 AB (Blue fin) | ⁽²⁾ Shield type cable only. (3) ESP = External static pressure HSD = High speed drive HSDM = High speed drive and motor All the data are at EUROVENT conditions with 400V/3+N/50Hz. Cooling: Entering indoor coil temp. 27°C / 19°C WB and outdoor temperature 35°C Heating: Entering indoor coil temp. 20°C and outdoor temperature 7°C / 6°C WB # Accessories or options #### Compatibility table / Codes | VITALITY UNITS | | | | | | | | | | |--|---------------------|--------------------------|------------|------------|------------|------------|------------|------------|------------| | Cooling only models | - | | VAC 20 AB | VAC 25 AB | VAC 30 AB | VAC 45 AB | VAC 60 AB | VAC 75 AB | VAC 90 AB | | Cooling only model | | | S661522073 | S661522573 | S661523073 | S661524673 | S661526173 | S661527673 | S661529173 | | | | | VAH 20 AB | VAH 25 AB | VAH 30 AB | VAH 45 AB | VAH 60 AB | VAH 75 AB | VAH 90 AB | | Heat pump models | | | S662532073 | S662532573 | S662533073 | S662534673 | S662536173 | S662537673 | S662539173 | | | | | | | | | | | | | Thermostat | | | 1 | | | | | | | | Delivered with the unit | | | | | I . | DPC-1 | | | | | YNK2Open Gateway
BACnet / IP - JCI Metas | sys N2 | S606791244 | А | А | А | А | А | А | А | | YNK2Open Gateway
Modbus TCP / IP - JCI Me | etasys N2 | S606791245 | А | А | А | А | А | А | А | | Accessories or option | ons for outdoor u | nits | | | | | | | | | VAC/VAH models | | | 20AB | 25AB | 30AB | 45AB | 60AB | 75AB | 90AB | | Laura Arabia at Kit | | S606819974 | 0 | 0 | 0 | | | | | | Low Ambient Kit | | S606819975 | | | | 0 | 0 | 0 | 0 | | C-6 -tt | | S606744692 | 0 | 0 | 0 | | | | | | Soft start compressor | | S606744693 | | | | 0 | 0 | 0 | 0 | | Alarm relay board | | S606791243 | O/A | Copper-copper coil | | Contact us | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Accessories or option | ons for indoor uni | ts | | | | | | | | | VIR models | | | 2! | 5A | 40AB | 45AB | 60AB | 75AB | 90AB | | | 10 kW (1 stage) | S611763704 | 0 | /A | | | | | | | | 15 kW (1 stage) | S611763714 | 0 | /A | | | | | | | | 10 kW (1 stage) | S611763724 | | | O/A | | | | | | Electrical Heaters | 20 kW (2 stages) | S611763734 | | | O/A | | | | | | cable 20 m included) | 15 kW (1 stage) | S611763744 | | | 0,7,1 | O/A | O/A | | | | | 30 kW (2 stages) | S611763754 | | | | O/A | O/A | | | | | 30 kW (2 stages) | S611763764 | | | | Offic | Offic | O/A | O/A | | | 40 kW (2 stages) | S611763774 | | | | | | O/A | O/A | | | | S611763774
S611763780 | | A | А | А | А | O/A | O/A | | 50 m connecting cable | 1 stage
2 stages | S611763780
S611763781 | , | A . | A | A | A | А | А | | | 2 Stages | | | Λ. | A | A | А | А | A | | Economizer or Motoris | sed damner | S613994250 | , | A | Δ. | | | | | | (dry bulb sensors inclu | ded) | S613994400 | | | А | Α. | ۸ | | | | (cable 20 m included) | • | S613994450 | | | | A | А | | | | | | S613994750 | | | | | | A | A | | Indoor air quality | | S606819964 | | A | A | A | А | А | А | | | | S611082513 | (| 0 | _ | | | | | | Hot water coil and cor | itrol | S611084010 | | | 0 | _ | _ | | | | (cable 20 m included) | | S611084512 | | | | 0 | 0 | | | | | | S611087510 | | | | | | 0 | 0 | | 50 m communication cable | e (Economizer/HWC) | S611087520 * | ı | A | A | A | А | А | А | | Return fan | | S613995450 | | | | А | А | | | | | | S613995750 | | | | | | А | А | | | | S669482502 | (| 0 | | | | | | | Vertical discharge Kit | | S669484002 | | | 0 | | | | | | aca. a.seriarse Mit | | S669486002 | | | | 0 | 0 | | | | | | S669487502 | | | | | | 0 | 0 | | Indoor fan smooth sta | rt up to 5,5 kW | S606744690 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | S611991087 | (| 0 | | | | | | | | | S611991089 | | | 0 | | | | | | High speed drive | | S611991091 | | | | 0 | | 0 | | | | | S611991092 | | | | | 0 | | | | | | S611991095 | | | | | | | 0 | | | | S611991088 | (| 0 | | | | | | | | | S611991090 | | | | 0 | | | | | High speed drive and r | motor | S611991093 | | | | | 0 | | | | - · | | S611991094 | | | | | | 0 | | | | | | | | | | | | | O = Option (factory fitted) A = Accessory (supplied loose) O/A = If you want this item factory fitted, precise it in the order form (1) Factory fitted, for horizontal airflow only. * If the unit is equipped with economizer and hot water coil, only 1 communication cable is necessary. # Indoor units dimensions #### VIR 25 AB #### VIR 40-45-60 AB VIR 25 AB All dimensions in mm. Drawings not a scale. | Unit | Α | В | С | D | E | F | G | Н | - 1 | J | K | L | М | N | |-----------|-----|------|-----|-----|-----|-----|-----|-----|-----|----|------|-----|----|----| | VIR 40 AB | 665 | 1740 | 785 | 442 | 316 | 229 | 316 | 442 | 347 | 79 | 1337 | 593 | 21 | 25 | | VIR 45 AB | 764 | 2240 | 772 | 567 | 401 | 309 | 401 | 567 | 347 | 79 | 1920 | 692 | 21 | 25 | | VIR 60 AB | 764 | 2240 | 772 | 567 | 401 | 309 | 401 | 567 | 347 | 79 | 1920 | 692 | 21 | 25 | #### VIR 75-90 AB All dimensions in mm. Drawings not a scale. | Unit |
Α | В | С | D | E | F | G | Н | - 1 | J | K | L | М | N | |-----------|-----|------|-----|-----|-----|-----|-----|-----|-----|----|------|-----|----|----| | VIR 75 AB | 838 | 2653 | 892 | 663 | 478 | 376 | 478 | 663 | 409 | 79 | 2196 | 766 | 21 | 25 | | VIR 90 AB | 838 | 2653 | 892 | 663 | 478 | 376 | 478 | 663 | 409 | 79 | 2196 | 766 | 21 | 25 | # Dimensions and space requirements for outdoor units VAC-VAH 20-25-30 AB All dimensions in mm. Drawings not a scale. #### VAC-VAH 45-60 AB All dimensions in mm. Drawings not a scale. #### **VAC-VAH 75-90 AB** All dimensions in mm. Drawings not a scale. #### VAC-VAH 20-25-30 AB | | Α | В | С | D | |-----------|---------------------|------------------------|-------|-------| | Unit | Gas piping diameter | Liquid piping diameter | mm | mm | | VAC 20 AB | 1-1/8" | 1/2" | 1 030 | 1 230 | | VAH 20 AB | 1-1/8" | 1/2" | 1 030 | 1 230 | | VAC 25 AB | 1-1/8" | 1/2" | 1 030 | 1 230 | | VAH 25 AB | 1-1/8" | 1/2" | 1 030 | 1 230 | | VAC 30 AB | 1-1/8" | 5/8" | 1 182 | 1 382 | | VAH 30 AB | 1-1/8" | 5/8" | 1 182 | 1 382 | #### VAC-VAH 45-60 AB | | Α | В | С | D | |-----------|---------------------|------------------------|-------|-------| | Unit | Gas piping diameter | Liquid piping diameter | mm | mm | | VAC 45 AB | 2 x 1-1/8" | 2 x 1/2" | 1 178 | 1 378 | | VAH 45 AB | 2 x 1-1/8" | 2 x 1/2" | 1 129 | 1 429 | | VAC 60 AB | 2 x 1-1/8" | 2 x 5/8" | 1 178 | 1 378 | | VAH 60 AB | 2 x 1-1/8" | 2 x 5/8" | 1 129 | 1 429 | #### **VAC-VAH 75-90 AB** | | Α | В | С | D | |-----------|---------------------|------------------------|----|----| | Unit | Gas piping diameter | Liquid piping diameter | mm | mm | | VAC 75 AB | 2 x 1-3/8" | 2 x 7/8" | - | - | | VAH 75 AB | 2 x 1-3/8" | 2 x 7/8" | - | - | | VAC 90 AB | 2 x 1-3/8" | 2 x 7/8" | - | - | | VAH 90 AB | 2 x 1-3/8" | 2 x 7/8" | - | - | # Selection Tool for Advanced Rooftops - S.T.A.R. Johnson Controls continues the improvement of the selection software for Packaged and Commercial Split Systems called YORK® S.T.A.R – Selection Tool for Advanced Rooftop. By installing new releases, available through Virtual Branch portal, the selection tool is updated periodically with the aim to help and simplify the product selection and quotation process. #### Using S.T.A.R you will be able to select: - · The ACTIVA Rooftop range units - Roomtop units (RTC/RTH) - · Vitality Large Split units (including condenser units only) In addition, the selection of some key options are possible. For instance: **economizer, enthalpy wheel, high pressure drive, hot water coil** for the ACTIVA Rooftops 17-40 and 45-90. The tool allows **extracting reports easily in different formats** (editable and non editable). S.T.A.R. is currently available in English, Spanish, Polish and Italian. The tool can be translated to other languages if required. * Call your JCI Sales Representative and request access now. # Comprehensive Solutions INDUSTRIAL REFRIGERATION VERASYS™ CONFIGURABLE BUILDING CONTROLS SYSTEM FOR SMARTER BUILDINGS METASYS® BUILDING AUTOMATION AND CONTROL SYSTEMS # Industrial refrigeration Johnson Controls Industrial Refrigeration designs, manufactures, tests, installs and commissions highly efficient and environmentally sustainable refrigeration solutions for the demanding conditions encountered in industrial environments. # SABROE HeatPAC HPO/HPC heat pumps ### a reciprocating compressor, with a 300-2000 kW capacity range SABROE HeatPAC units are extremely compact heat pumps based on ultra-reliable SABROE HPO/HPC high-pressure reciprocating compressors, using ammonia as refrigerant. They are usually most cost-effective when fitted with a variable-speed drive (VSD) that makes it easy to deal with changing conditions and different operating requirements. These highly customisable integrated units are based on a unique vibration-resistant design, featuring a unique flooded evaporating system. They provide exceptional heat pump capacity from the smallest possible footprint, and with only a very small refrigerant charge. SABROE HeatPAC heat pumps are the ideal solution for effectively exploiting low-temperature waste heat, and turning it into hot water (up to 75 °C), using only a minimum of electrical energy. These units are designed to provide a cost-effective way to tackle needs for cooling and heating at the same time, providing an extremely high coefficient of performance (COP). #### Main benefits - · High reliability proven components - Fast installation quick start-up - · High efficiency high saving potential. #### **Options** - · Cascade evaporator - Variable-speed drive (VSD) - · Soft-starter or Y/D starter - De-superheater - Subcooler - · Control panel mounted separately - Customer-witnessed factory acceptance tests (FAT). #### HeatPAC packaged ammonia heat pumps | | Heating | Cooling | Line Power | COPline | R717 | Dry | | Dimensions | | Sound level | |---------------|----------------|----------------|----------------|---------|--------------|--------------|---------|------------|---------|-------------| | Туре | capacity
kW | capacity
kW | consumption kW | heat | charge
kg | weight
kg | L
mm | W
mm | H
mm | dB(A) | | HeatPAC 24-W | 310 | 263 | 50 | 6,1 | 29 | 2020 | 2800 | 1000 | 2000 | 75 | | HeatPAC 26-W | 465 | 395 | 76 | 6,1 | 38 | 2230 | 2850 | 1000 | 2000 | 76 | | HeatPAC 28-W | 620 | 527 | 101 | 6,1 | 48 | 2420 | 2900 | 1000 | 2000 | 77 | | HeatPAC 104-W | 731 | 618 | 120 | 6,1 | 55 | 2630 | 3050 | 1000 | 2000 | 81 | | HeatPAC 106-W | 1081 | 911 | 180 | 6 | 74 | 3300 | 3750 | 1000 | 2000 | 82 | | HeatPAC 108-W | 1441 | 1216 | 239 | 6 | 87 | 3950 | 4050 | 1000 | 2000 | 83 | | HeatPAC 112-W | 2075 | 1735 | 345 | 6 | 110 | 5270 | 5050 | 1000 | 2100 | 85 | Condenser water inlet +60 °C, outlet +70 °C $\,$ / $\,$ Evaporator water inlet +39 °C, outlet +34 °C W = Heat pump unit water/water All data and nominal capacities kW at 1800 rpm. All HeatPACs: 60 Hz or VSD operation possible. Sound pressure levels in free field, over reflecting plane and one metre distance from the unit. # SABROE HeatPAC HPX heat pumps # Single-stage high-pressure ammonia-based heat pumps, using a reciprocating compressor, with a 300-1300 kW capacity range SABROE HeatPAC™ HPX heat pumps are compact units with an integrated single-stage configuration that features less than half the space and weight requirements of any other heat pump designs usually needed to achieve 90 °C hot water outputs. These energy-efficient units feature a breakthrough HPX hybrid compressor design that allows differential pressures as high as 40 bar and discharge pressures as high as 60 bar, combined with space-saving evaporator technology from the ChillPAC™ packaged ammonia chiller. HeatPAC HPX heat pumps make it easy to produce hot water at temperatures up to 90 °C, using any suitable source of low-temperature heat, with only tiny energy inputs needed. They provide a low-cost supply of hot water at temperatures ideal for sterilisation and pasteurisation – as well as many other hygienesensitive functions and processes. #### **Options** - · Cascade evaporator - Subcooler - · Control panel mounted separately - Customer-witnessed factory acceptance tests (FAT). #### HeatPAC HPX ammonia heat pumps | | Heating | Cooling | E-motor | СОР | R717 | Dry | | Dimensions | | Sound.level | |---------------|----------------|----------------|---------|-----------|--------------|--------------|---------|------------|---------|-------------| | Туре | capacity
kW | capacity
kW | | line heat | charge
kg | weight
kg | L
mm | W
mm | H
mm | dB(A) | | HeatPAC 704-W | 338.7 | 266.7 | 91 | 4.2 | 19 | 3500 | 3500 | 1000 | 2100 | 83 | | HeatPAC 706-W | 508.1 | 400.2 | 136 | 4.2 | 29 | 4200 | 3700 | 1000 | 2100 | 85 | | HeatPAC 708-W | 677.5 | 533.6 | 200 | 4.2 | 35 | 5000 | 4100 | 1000 | 2100 | 86 | | HeatPAC 712-W | 1016 | 800.6 | 303 | 4.2 | 55 | 6250 | 4700 | 1000 | 2100 | 87 | | HeatPAC 716-W | 1355 | 1067 | 345 | 4.2 | 75 | 7000 | 6000 | 1000 | 2100 | 88 | Condenser water inlet +70°C, outlet +90°C. Evaporator water inlet +39°C, outlet +34°C. Capacities are nominal at 1800 rpm. W = Heat pump unit water/water VSD drive is standard. Sound pressure levels in free field, over reflecting plane and one meter distance from the unit. # SABROE DualPAC heat pumps # Two-stage ammonia-based heat pumps with capacities of up to 2500 kW SABROE DualPAC heat pumps combine ChillPAC, HeatPAC and HeatPAC HPX units into one single heat pump, using an ingenious modular system that makes it possible to achieve high temperature lifts, with the advantages of compact design and attractive operating economics. The DualPAC is a two-stage high-temperature heat pump configuration that uses ammonia as refrigerant, and is designed with the sole aim of best possible performance and versatile operating conditions along with the same practical benefits – including small refrigerant charges and limited footprint – as any other SABROE heat pump. This unique setup ensures maximum flexibility in both configuration and capabilities, because all standard ChillPAC and HeatPAC models can be used. The setup is possible due to a purpose-designed open inter-stage cooler that operates with a minimal refrigerant charge. The DualPAC benefits from all of the advantages of the ChillPAC and HeatPAC product ranges, based on patented SABROE evaporator and condenser designs along with the most extensive range of reciprocating compressors available anywhere in the world, and featuring configurations with HPO/HPC or HPX compressors as the high stage and SMC compressors on the low stage. Within the extensive portfolio of SABROE heat pumps, these dual versions are ideal wherever there is a need for big temperature lifts along with good performance in order to make the installation financially advantageous. The DualPAC configuration is optimised for use in district heating and ground-source cooling, so that thermal energy can be put to the most
cost-effective use. The water circuit on the hot side consists of a series of heat exchangers built into one single vessel that extracts the heat from de-superheating, condensing and subcooling processes. In many cases even de-superheating at the low stage is profitable, and serves to increase performance still further. | Advantages | Benefits | |--|---| | Stepless, skip-free capacity control ensures that output always matches requirements | Lowest possible operating costs and maximum return on investment | | Consistently high performance at both full and part load | Maximum part-load efficiency and low life cycle costs | | Unique two-stage solution featuring patented technology | Makes it possible to deal with multiple sets of running conditions | | Space-saving footprint, with fewer moving parts and very low vibration | Exceptional reliability and low maintenance costs | | Supports Condition Based Service (CBS) schedules | Optimised service/maintenance intervals, with a minimum of unscheduled downtime | #### DualPAC heat pumps (Condenser water: inlet +50°C, outlet +70°C / Evaporator water: inlet +30°C, outlet +20°C) | _ | Heating | Cooling | Power | COP heat | R717 charge | Dry weight | Dimensio | ons in mm | (approx.) | Sound level | |---------------|----------------|----------------|---------------------------|----------|-------------|--------------|----------|-----------|-----------|-------------| | Туре | capacity
kW | capacity
kW | consumption
kW (shaft) | (shaft) | kg | kg (approx.) | L | w | Н | dB(A) | | DualPAC 24-W | 387 | 312 | 75 | 5.1 | 35 | 4020 | 2900 | 3000 | 2000 | 82 | | DualPAC 26-W | 581 | 455 | 115 | 5.0 | 40 | 4460 | 2900 | 3000 | 2000 | 83 | | DualPAC 28-W | 775 | 619 | 155 | 4.9 | 45 | 4840 | 2900 | 3000 | 2000 | 84 | | DualPAC 104-W | 935 | 745 | 189 | 4.9 | 65 | 5500 | 4500 | 3000 | 2000 | 84 | | DualPAC 106-W | 1388 | 1109 | 282 | 4.9 | 70 | 6700 | 5000 | 3000 | 2000 | 85 | | DualPAC 108-W | 1850 | 1471 | 379 | 4.8 | 95 | 7890 | 6000 | 3000 | 2200 | 86 | | DualPAC 112-W | 2777 | 2190 | 584 | 4.7 | 115 | 10450 | 7500 | 3000 | 2200 | 86 | | DualPAC 704-W | 435 | 348 | 86 | 5.0 | 40 | 6500 | 3500 | 3000 | 2100 | 86 | | DualPAC 706-W | 652 | 520 | 132 | 4.9 | 45 | 7900 | 3700 | 3000 | 2100 | 86 | | DualPAC 708-W | 870 | 690 | 180 | 4.8 | 55 | 10000 | 4100 | 3000 | 2100 | 87 | | DualPAC 712-W | 1305 | 1025 | 280 | 4.6 | 75 | 13500 | 5000 | 3000 | 2100 | 88 | | DualPAC 716-W | 1740 | 1365 | 375 | 3.6 | 115 | 16500 | 6000 | 3000 | 2100 | 89 | #### DualPAC heat pumps (Condenser water: inlet +70°C, outlet +90°C / Evaporator water: inlet +15°C, outlet +5°C) | Torre | Heating capacity | Cooling
capacity
kW | Power
consumption
kW (shaft) | COP heat | R717 charge | Dry weight | Dimensions in mm (approx.) | | | Sound level | |---------------|------------------|---------------------------|------------------------------------|----------|-------------|------------|----------------------------|------|------|-------------| | Туре | kW | | | (shaft) | kg | kg | L | W | н | dB(A) | | DualPAC 704-W | 444 | 308 | 140 | 3.1 | 40 | 6500 | 3500 | 3000 | 2100 | 86 | | DualPAC 706-W | 666 | 460 | 212 | 3.3 | 45 | 7900 | 3700 | 3000 | 2100 | 86 | | DualPAC 708-W | 888 | 610 | 287 | 3.0 | 55 | 10000 | 4100 | 3000 | 2100 | 87 | | DualPAC 712-W | 1332 | 907 | 441 | 3.0 | 75 | 13500 | 5000 | 3000 | 2100 | 88 | | DualPAC 716-W | 1775 | 1205 | 595 | 2.9 | 115 | 16500 | 6000 | 3000 | 2100 | 89 | Please contact your SABROE representative for availability. ## SABROE ComPAC chillers # Packaged ammonia chillers based on screw compressors, with a 200–2200 kW capacity range SABROE ComPAC ammonia chillers based on plate-and-shell heat exchangers and the comprehensive SABROE screw compressor programme (SAB 120-151 to SAB 193-233 and SABflex) are distinctive for their compactness. Frequency converter and panel solutions are supplied as standard. ComPAC chillers with capacities below 1400 kW use the ultra-compact and extremely low-charge SABROE-patented plate-and-shell heat exchangers. Chillers with capacities above 1400 kW use condensers and evaporators of premium quality, integrated into a unique vibration-resistant design. #### Range There are 13 different standard models in this range of ComPAC chillers – both high- and low-temperature versions. A comprehensive range of equipment options are available to ensure the best possible performance and application versatility. #### **Options** - · Variable-speed drive (VSD) - · Soft-starter or Y/D starter - · Sound enclosure for outdoors mounting - · External condenser - Control panel mounted separately - Economiser option for low-temperature brine - Customer-witnessed factory acceptance tests (FAT) - Heater package for low-temperature operation - Shunt solution for high-temperature difference. | Advantages | Benefits | |--|---| | Factory-assembled, pre-tested packaged units based on renowned SABROE screw compressors | Easy pre-commissioning makes installation and running-in both faster and cheaper. Factory acceptance tests (FAT) available (as an option) | | Compact design with a very small footprint compared with bespoke chiller designs | Lower unit cost and lower installation costs | | Indirect cooling and uncomplicated flooded evaporating system, using natural ammonia (R717) only | Major savings on both weight and space. Much less need for expensive separate machinery rooms | | Exceptional COP and outstanding part-load performance | Greater safety and outstanding reliability | | Small refrigerant charge, smaller than conventional chiller charges due to the special condenser/evaporator design | Greater cooling effect from a smaller refrigerant charge, and optimum load structure over the entire capacity range | #### ComPAC water chillers (water: inlet +12°C, outlet +7°C) | Time | Cooling capacity | E-motor | R717 charge | Dry weight | C | imensions in m | m | Sound level | SEPR | |----------------|------------------|---------|-------------|------------|------|----------------|------|-------------|--------| | Туре | kW | L motor | kg | kg | L | w | н | dB(A) | SEPK | | ComPAC 120 S-A | 190 | 55 | 21 | 3600 | 4600 | 1200 | 2300 | 85 | 6.99 | | ComPAC 120 M-A | 316 | 78 | 26 | 3800 | 4700 | 1200 | 2300 | 86 | 7.4 | | ComPAC 120 L-A | 401 | 97 | 29 | 4000 | 4800 | 1200 | 2300 | 87 | 7.62 * | | ComPAC 120 E-A | 539 | 142 | 36 | 5200 | 5000 | 1200 | 2300 | 89 | 7.81 | | ComPAC 151 S-A | 615 | 142 | 38 | 5500 | 5000 | 1200 | 2300 | 91 | 8.53 | | ComPAC 151 M-A | 737 | 172 | 44 | 5800 | 5100 | 1200 | 2300 | 92 | 8.4 | | ComPAC 151 L-A | 932 | 217 | 51 | 5900 | 5300 | 1200 | 2300 | 92 | 8.59 | | ComPAC Flex-A | 950 | 315 | 54 | 5700 | 5500 | 1200 | 2300 | 89 | 8.01 | | ComPAC 151 E-A | 1116 | 279 | 59 | 6300 | 5600 | 1200 | 2300 | 93 | 8.5 | | ComPAC 193 S-A | 1067 | 222 | 57 | 7100 | 5600 | 1500 | 2400 | 85 | 9.51 | | ComPAC 193 L-A | 1447 | 327 | 159 | 7400 | 6100 | 1500 | 2400 | 85 | 10.3 * | | ComPAC 233 S-A | 1976 | 410 | 238 | 13000 | 7000 | 1500 | 2400 | 86 | 11.39 | | ComPAC 233 L-A | 2305 | 536 | 297 | 15000 | 7100 | 1500 | 2400 | 86 | 9.34 | Condenser: Water inlet 30 °C, outlet 35 °C. All data and nominal capacities kW at 3600 rpm Flex at 6000 rpm Flex at 6000 rpm ComPAC 120S at 1470 rpm * Unit used for letter of compliance for ECO-design Sound pressure levels in free field, over reflecting plane and one metre distance from the unit. SEPR = Seasonal Energy Performance Ratio Available with high-pressure compressors as HeatPAC. #### ComPAC brine chillers (Ethylene glycol 30%: inlet -2°C, outlet -8°C) | Tuna | Cooling capacity | E-motor | R717 charge | Dry weight | С | imensions in m | m | Sound level | I SEPR | |----------------|------------------|---------|-------------|------------|------|----------------|------|-------------|--------| | Туре | kW | E motor | kg | kg | L | w | Н | dB(A) | SEPK | | ComPAC 120 S-A | 109 | 45 | 21 | 3600 | 4500 | 1200 | 2300 | 85 | 4.03 | | ComPAC 120 M-A | 177 | 78 | 26 | 3800 | 4600 | 1200 | 2300 | 86 | 4.38 | | ComPAC 120 L-A | 224 | 93 | 29 | 4000 | 4700 | 1200 | 2300 | 87 | 4.45 | | ComPAC 120 E-A | 297 | 114 | 36 | 5200 | 4900 | 1200 | 2300 | 89 | 4.51 * | | ComPAC 151 S-A | 344 | 140 | 38 | 5500 | 4900 | 1200 | 2300 | 91 | 4.69 | | ComPAC 151 M-A | 410 | 175 | 44 | 5800 | 5000 | 1200 | 2300 | 92 | 4.68 | | ComPAC 151 L-A | 517 | 217 | 51 | 5900 | 5200 | 1200 | 2300 | 92 | 4.73 | | ComPAC Flex-A | 541 | 200 | 54 | 5700 | 5400 | 1200 | 2300 | 89 | 4.64 | | ComPAC 151 E-A | 620 | 269 | 59 | 6300 | 5500 | 1200 | 2300 | 93 | 4.77 | | ComPAC 193 S-A | 597 | 217 | 57 | 7100 | 5500 | 1500 | 2400 | 85 | 4.95 | | ComPAC 193 L-A | 798 | 279 | 71 | 7400 | 6000 | 1500 | 2400 | 85 | 4.91 | | ComPAC 233 S-A | 1053 | 410 | 75 | 13000 | 6900 | 1500 | 2400 | 86 | 5.29 | | ComPAC 233 L-A | 1362 | 472 | 225 | 15000 | 7000 | 1500 | 2400 | 86 | 5.34 | Condenser: Water inlet 30 °C, outlet 35 °C. All data and nominal capacities kW at 3600 rpm Flex at 6000 rpm ComPAC 120S at 1470 rpm * Unit used for letter of compliance for ECO-design Sound pressure levels in free field, over reflecting plane and one metre distance from the unit. SEPR = Seasonal Energy Performance Ratio Available with high-pressure compressors as HeatPAC. ## SABROE ChillPAC # Extremely compact packaged ammonia chillers based on reciprocating compressors, with a 100–1400 kW capacity range ChillPAC ammonia-based chillers feature an ultra-compact format so narrow that they can even pass through a normal doorway. This is achieved by having an extra-compact shell-and-plate
evaporator/condenser, oil separator and control system all built in and fully integrated into a unique vibration-resistant design. This means ChillPAC units provide exceptional refrigeration capacity – taking full advantage of the many different models of ultra-reliable Sabroe reciprocating compressors – while only taking up a minimum of space. This makes ChillPAC units ideal in installations where space is limited, and where there are restrictions on the refrigerant charge used. ChillPAC chillers are most cost-effective when fitted with a variable-speed drive (VSD) that makes it easy to deal with changing circumstances and different operating requirements. #### Range There are 20 different models in the standard ChillPAC range, with capacities ranging from 90 kW to 1398 kW. #### Main benefits - · Fast installation quick start-up - · High reliability 100% factory-tested - · Minimised life cycle costs - · High safety standards small refrigerant charge. #### **Options** - Variable-speed drive (VSD) - · Soft-starter or Y/D starter - De-superheater - · Sub-cooler - · External condenser - · Control panel mounted separately - · S and L models: 1800 rpm at 60 Hz or VSD - · Customer-witnessed factory acceptance tests (FAT) - Heater package for low-temperature heat pump operation - · Shunt solution for high-temperature difference. | Advantages Benefits | |---------------------| |---------------------| | Factory-assembled, pre-tested packaged units based on Sabroe reciprocating compressors world-renowned for their reliability | Easy pre-commissioning makes installation and running-in both faster and cheaper. Factory acceptance tests (FAT) available (as an option) | |--|---| | Exceptionally compact design and fully integrated configuration results in less than half the footprint of bespoke chiller designs | Major savings on both weight and space, resulting in lower installation costs. Much less need for expensive separate machinery rooms | | Indirect cooling and uncomplicated flooded evaporating system, using natural ammonia (R717) only | Greater safety and outstanding reliability | | Exceptional COP and outstanding part-load performance | Greater cooling effect from a smaller refrigerant charge, and optimum load structure over the entire capacity range | | Refrigerant charge 50% smaller than with conventional chillers, because of special condenser/evaporator design | Higher output per unit kW/kg refrigerant, lower unit cost and lower installation costs. | #### ChillPAC water chillers (water: inlet +12°C, outlet +7°C) | Туре | Cooling capacity | E-motor | R717 charge
kg | Dry weight
kg | | Dimensions | Sound level | | | |--------------------|------------------|---------|-------------------|------------------|-------------------|------------|-------------------|-------|---------| | | kW | | | | L | W | Н | dB(A) | SEPR | | ChillPAC 24 | 117 | 29 | 10 | 2000 | mm
2900 | mm
1000 | mm
2000 | 72 | 11.59 | | ChillPAC 34 | 137 | 32 | 10 | 2000 | 2900 | 1000 | 2000 | 72 | 10.75 | | ChillPAC 26 | 176 | 39 | 14 | 2050 | 2900 | 1000 | 2000 | 72 | 10.5 | | ChillPAC 36 | 205 | 48 | 14 | 2100 | 2900 | 1000 | 2000 | 73 | 10.6 | | ChillPAC 28 | 233 | 48 | 15 | 2150 | 2900 | 1000 | 2000 | 73 | 10.61 | | ChillPAC 38 | 275 | 66 | 16 | 2900 | 2900 | 1000 | 2000 | 74 | 10.63 | | ChillPAC 104 S-A | 273 | 66 | 15 | 2300 | 2900 | 1000 | 2000 | 80 | 9.33 | | ChillPAC 104 L-A | 361 | 79 | 21 | 2410 | 2900 | 1000 | 2000 | 83 | 11.02 | | ChillPAC 104 E-A * | 369 | 74 | 19 | 2652 | 2900 | 1000 | 2000 | 80 | 9.86 | | ChillPAC 106 S-A | 406 | 91 | 20 | 2727 | 2900 | 1000 | 2000 | 83 | 9.67 ** | | ChillPAC 106 L-A | 544 | 113 | 27 | 2950 | 2900 | 1000 | 2000 | 79 | 10.86 | | ChillPAC 106 E-A * | 553 | 110 | 27 | 3225 | 3100 | 1000 | 2000 | 81 | 9.96 | | ChillPAC 108 S-A | 573 | 113 | 28 | 3060 | 2900 | 1000 | 2000 | 84 | 10.64 | | ChillPAC 108 L-A | 709 | 142 | 31 | 3526 | 3100 | 1000 | 2000 | 85 | 10.63 | | ChillPAC 108 E-A * | 729 | 162 | 34 | 2880 | 3300 | 1000 | 2000 | 84 | 9.91 | | ChillPAC 112 S-A | 851 | 177 | 40 | 4315 | 4000 | 1000 | 2200 | 86 | 10.39 | | ChillPAC 112 L-A | 1055 | 200 | 46 | 4738 | 4500 | 1000 | 2200 | 86 | 10.45 | | ChillPAC 112 E-A * | 1076 | 245 | 50 | 5196 | 4600 | 1000 | 2200 | 84 | 9.87 | | ChillPAC 116 S-A | 1114 | 245 | 51 | 5044 | 4500 | 1000 | 2200 | 86 | 10.36 | | ChillPAC 116 L-A | 1348 | 303 | 53 | 5556 | 4700 | 1000 | 2200 | 87 | 10.18 | | ChillPAC 116 E-A * | 1350 | 290 | 53 | 5878 | 5000 | 1000 | 2200 | 85 | 9.3 ** | #### ChillPAC brine chillers (ethylene glycol 30%: inlet -2°C, outlet -8°C) | _ | Cooling capacity kW | E-motor | R717 charge
kg | Dry weight
kg | | Dimensions | Sound level | | | |--------------------|---------------------|---------|-------------------|------------------|---------|------------|-------------|-------|---------| | Туре | | | | | L
mm | W
mm | H
mm | dB(A) | SEPR | | ChillPAC 24 | 61 | 22 | 10 | 2000 | 2900 | 1000 | 2000 | 73 | 5.44 | | ChillPAC 34 | 70 | 29 | 10 | 2000 | 2900 | 1000 | 2000 | 73 | 5.41 | | ChillPAC 26 | 87 | 30 | 10 | 2000 | 2900 | 1000 | 2000 | 73 | 5.37 | | ChillPAC 36 | 100 | 38 | 10 | 2050 | 2900 | 1000 | 2000 | 73 | 5.27 | | ChillPAC 28 | 114 | 46 | 11 | 2100 | 2900 | 1000 | 2000 | 74 | 5.24 | | ChillPAC 38 | 133 | 46 | 12 | 2250 | 2900 | 1000 | 2000 | 74 | 5.19 | | ChillPAC 104 S-C | 140 | 54 | 13 | 2253 | 2900 | 1000 | 2000 | 78 | 5.21 | | ChillPAC 104 L-C | 180 | 72 | 15 | 2378 | 2900 | 1000 | 2000 | 79 | 5.23 | | ChillPAC 104 E-C * | 185 | 73 | 15 | 2586 | 2900 | 1000 | 2000 | 79 | 5.12 | | ChillPAC 106 S-C | 208 | 72 | 16 | 2505 | 2900 | 1000 | 2000 | 80 | 5.2 | | ChillPAC 106 L-C | 269 | 91 | 20 | 2701 | 2900 | 1000 | 2000 | 80 | 5.27 | | ChillPAC 106 E-C * | 280 | 91 | 22 | 2866 | 2900 | 1000 | 2000 | 80 | 5.26 | | ChillPAC 108 S-C | 280 | 91 | 22 | 2766 | 2900 | 1000 | 2000 | 82 | 5.36 | | ChillPAC 108 L-C | 362 | 136 | 26 | 3091 | 3100 | 1000 | 2000 | 82 | 5.45 ** | | ChillPAC 108 E-C * | 369 | 136 | 26 | 3523 | 3300 | 1000 | 2000 | 82 | 5.23 | | ChillPAC 112 S-C | 419 | 136 | 32 | 3696 | 3800 | 1000 | 2200 | 83 | 5.38 | | ChillPAC 112 L-C | 534 | 200 | 37 | 4290 | 4200 | 1000 | 2200 | 83 | 5.4 | | ChillPAC 112 E-C * | 546 | 200 | 38 | 4733 | 4300 | 1000 | 2200 | 83 | 5.26 | | ChillPAC 116 S-C | 547 | 200 | 38 | 4390 | 4200 | 1000 | 2200 | 83 | 5.38 | | ChillPAC 116 L-C | 699 | 245 | 47 | 4898 | 4300 | 1000 | 2200 | 83 | 5.38 | | ChillPAC 116 E-C * | 705 | 245 | 46 | 5322 | 4300 | 1000 | 2200 | 83 | 5.11 | Condenser: water inlet 30 °C, outlet 35 °C. The above data are only valid for the stated temperatures and operating conditions. Capacities are nominal at 1800 rpm. * capacities are nominal at 1500 rpm. ** Unit used for letter of compliance for ECO-design Sound pressure levels in free field, over reflecting plane and one metre distance from the unit. # SABROE SABlight #### SABlight air-cooled chillers Compact air-cooled chillers for outdoor installation, based on a screw compressor, with a 174-430 kW capacity range. The SABlight air-cooled chiller is a particularly compact design that uses V-coil condensers to substantially reduce the overall footprint resulting in a height of 2.9 m and a width of only 1.3 m. SABlight units provide a cost-effective alternative to traditional air conditioning, chilled rooms and industrial/process refrigeration. They are designed for quiet running and outdoor operation. SABlight uses a small propane refrigerant charge, providing an attractive, economical and environmentally responsible alternative to air-cooled chillers that use HFCs as refrigerant. #### Standard equipment - · Control and monitoring system - Variable-speed drive - · Hot-dip galvanised base frame - · Screw compressor - · Pre-charged with refrigerant. #### Compliance All SABlight air-cooled chillers are fully compliant with PED (CE marked and PED approved). Approval in accordance with other classification societies is available on request. #### **Options** - External communication via network and industrial-standard bus systems - Evaporator heating elements for frost-proofing - Epoxy coating of condenser surface - · Oil cooler - Models operating with inlet temperatures below 0°C available on request - Desuperheater - · Oil pump. #### Advantages | | المناسب ومستحا | small footprint | | |--------|----------------|-------------------|--| | omnact | nesign witt | i smaii tootnrint | | Quiet while running. Available in both low and ultra-low noise versions Variable-speed drive fitted to both compressor and fans, providing very high coefficient of performance (COP), even under part-load conditions Designed for maximum safety, with very small natural refrigerant charge (propane R290) Easy to mount, install and connect up Straightforward, uncomplicated construction #### **Benefits** Easy to mount outdoors - no special machinery room required Can be placed close to occupied buildings Low power consumption, which means low operating costs No expenditure on special safety precautions Low installation costs and rapid commissioning Low maintenance costs #### SABlight air-cooled chillers | | Cooling | Power | СОР | R290 | Dry | Dimensions | | | Nominal | Sound level | | |-----------------|----------------|----------------|-------|--------------|--------------|------------|---------|---------|-------------------|-------------|------| | Туре | capacity
kW | consumption kW | ESEER | charge
kg | weight
kg | L
mm | W
mm | H
mm | load current
A | dB(A) | SEPR | | SABlight A140-1 | 166 | 54 | 4.42 | 24 | 2300 | 5260 | 1250 | 2835 | 100 | 55 | 5.08 | | SABlight A140-2 | 163 | 55 | 4.63 | 24 | 2300 | 5260 | 1250 | 2835 | 105 | 45 | 5.49 | | SABlight
A200-1 | 210 | 71 | 4.51 | 24 | 2500 | 5260 | 1250 | 2835 | 135 | 55 | 5.26 | | SABlight A200-2 | 208 | 71 | 4.48 | 32 | 3000 | 6660 | 1250 | 2835 | 140 | 45 | 5.47 | | SABlight A260-1 | 277 | 92 | 4.57 | 32 | 3000 | 6660 | 1250 | 2835 | 170 | 55 | 5.20 | | SABlight A260-2 | 274 | 94 | 4.52 | 40 | 3300 | 8060 | 1250 | 2835 | 170 | 45 | 5.39 | | SABlight A340-1 | 324 | 101 | 4.70 | 40 | 3700 | 8060 | 1250 | 2835 | 190 | 55 | 5.22 | | SABlight A340-2 | 314 | 106 | 4.55 | 48 | 4200 | 9460 | 1250 | 2915 | 195 | 45 | 5.49 | | SABlight A400-1 | 406 | 133 | 4.31 | 48 | 4600 | 9460 | 1250 | 2915 | 245 | 55 | 5.03 | | SABlight A400-2 | 390 | 140 | 4.15 | 56 | 5000 | 10860 | 1250 | 2915 | 250 | 45 | 4.95 | Capacities are nominal and based on water temperature 12/7°C / ambient temperature 35°C Sound pressure levels in free field. All sound measuring has been carried out according to ISO 9614-2 at a distance of 10 m. ## SABROE Unisab III Integrated systems controller for refrigeration compressors, chillers and heat pumps Unisab III systems controllers are connectivity hubs that help make sure refrigeration installations have the best possible performance, maximum uptime and lowest possible operating costs. These important control units are pre-equipped and pre-configured with the connectivity equipment and protocols necessary for monitoring and controlling a wide range of compressors, compressor packages, chillers and heat pumps – as well as using this data for fault-finding and analysis. # SABROE Chiller Plant Controller (CPC) Integrated solution for managing and monitoring the controls equipment in chiller plants The SABROE chiller plant controller is a compact, easy-to-install control panel that contains a pre-programmed PLC system and touch panel for monitoring and controlling a wide range of external equipment that is not part of the chiller itself, but that serves the chilled water distribution system as well as other key equipment in the chiller plant. # SABROE Intelligent Remote Information Services (iRIS) Intelligent reporting and documentation system for optimising plant performance Intelligent Remote Information Services (iRIS) is a unique SABROE software platform (managed by Johnson Controls) that registers, captures and collates performance data from all types of industrial refrigeration and thermal transfer equipment. The iRIS system processes data such as: - · Load distribution and power consumption - · Performance patterns and fluctuations over time - Statistics for shutdowns and alarms to reveal any irregularities in operation - Comparisons and benchmarking between the different plants in a company, and operations in different countries. The iRIS system is part of a complete service concept, working on the basis of information collected and structured by the iRIS server to form different reports and services. These are available by subscription, tailored to the requirements of each individual installation. Manufacturer reserves the rights to change specifications without prior notice. # Configurable building controls system for smarter buildings For Light Commercial Building Controls Enterprises have more options to reduce costs and increase control of HVAC, refrigeration and lighting equipment. Verasys[™] is a new plug-and-play control system with less complexity and more capabilities. It streamlines installation, commissioning, and servicing, and provides access to critical data – when you need it and where you need it – to help facilities perform at peak levels. Verasys provides a simple user experience with configurable controllers (without tools), creating the first plug-and-play experience integrating HVACR equipment and controls for a certified system that's compliant for energy efficient operations. # Making buildings smarter by optimizing equipment. The Verasys control system leverages smart equipment technology from any manufacturer. Verasys is a straightforward, easy way to control and optimize single-site and multi-site enterprises. All mechanical equipment seamlessly connect to it and self-identify without requiring any special programming tools. As a result, you can take advantage of a new level of insight into building operations, and provide facilities that better serve occupants. # Smart, integrated control. Simplified and supported. Verasys gives users remote access over a secure internet connection. Plus, optional fault detection and diagnostics deliver alarm notifications immediately via email or text, and user-friendly graphics provide easy access to critical facility information to help minimize the risk of unplanned downtime and costly repairs. You can take advantage of predictive technologies solutions that deliver the quality and value your enterprise requires. Enhanced energy efficient control for smaller commercial buildings allow for an even higher energy class according to the EN15232. The advantage is that a facility owner can move from an average class D to a class A. The key to this efficiency is demand control, where the consumer spaces/rooms send the energy demands signals/requirements to the heating/cooling equipment. Matching the demand side and the supply side guarantees an energy efficient system overall. Whether it's one site, or one thousand, Verasys provides an advanced level of control flexibility, including scheduling, alarming, setpoints, custom trending, and more. It communicates using BACnet® MSTP, so Verasys is expandable to any BACnet® compliant system. And it works with third-party package equipment for greater application flexibility and to protect existing investments. # Leveraging Smart Equipment from Johnson Controls. Smart Equipment from Johnson Controls identifies embedded equipment that has advanced technology and smarts already embedded. Verasys takes full advantage of our Smart Equipment technology. It provides real-time performance data. No programming or commissioning tools. No engineering required. Just plug-and-play. The primary benefit of Smart Equipment is that it already has controls embedded by the manufacturer. This means it can connect seamlessly to controls systems like Verasys. It uses on-board controls to support data analytics, including fault detection, to support proactive maintenance and minimize downtime. Plus, control products/devices that are capable of controlling equipment without a supervisory controller provide a user interface experience. This allows it to self-discover and/or communicate with other Smart Equipment. In short, Smart Equipment helps maximize control for greater efficiency, extended equipment life and reduced operating costs. To see how you can take advantage of Smart Equipment, visit www.getsmartequipment.com. #### Built-in comfort and efficiency. Verasys helps enable a smarter building which means more comfort, productivity and efficiency. Verasys connects you to data streams from smart controls in rooftop units, chillers, heat pumps, fan coils, zone dampers, refrigeration systems, lighting panels and more. Data can be accessed anywhere, at any time, from any mobile device. This unprecedented, real-time access to critical information ensures energy efficiency and lower operating costs throughout the building's lifecycle so you can identify issues before they result in unplanned downtime. This extends equipment life. You also have the opportunity to save operating costs and simplify access to smart technology with Verasys, a complete buildings controls system that provides near real-time analysis of facility health and performance for optimal uptime. This includes access to a technologically advanced family of controllers which are configurable (no programming or tools needed), and access to a library with a vast array of applications that provides versatility and expandability. #### A smarter way to transform your business. Verasys provides the means, capabilities and reliable products to deliver leading-edge, end-to-end control technology to building owners. You get the best value and optimized building environments that support enterprise needs to increase productivity, efficiency, and maximize energy and cost savings. # Plug and play control system to manage smart buildings. In a single building, or across an entire enterprise, Verasys offers a new kind of plug-and-play controls solution. Through an advanced yet intuitive user interface, it delivers a higher level of building control intelligence that optimizes building ecosystems, resulting in a building that better serves its occupants. # Metasys® Building Automation and Control Systems Metasys® building management system from Johnson Controls ensures all of the building systems – comfort controls, lighting, fire safety, security and HVAC equipment – operate together in harmony. With an innovative, IT-based infrastructure, software and wireless capabilities, Metasys® is the one building management system that coordinates and organizes all the information logically to deliver it where and when needed, giving more control and easier access to information than any other system of its kind. Previously a winner of the Frost & Sullivan North American BAS Market Leadership Award, Metasys now offers even more. #### Ease of use - · Easy to configure and deploy - · No special training is required to use it - The new Metasys UI is designed to enhance our customers' productivity and effectiveness. It allows users to navigate by space to view summaries, trends, and activities, emulating the way they work every day. The new user interface is also optimized for all devices, enabling our customers to work smarter from any device and any location. #### More efficiency, less costs - The Energy Essentials leverages the Metasys® Advanced Reporting System to take the existing data and present it in an organized and informative way, providing easy-to-configure, easy-to-use and actionable energy reports - The improved Johnson Controls Central Plant Optimization™ 10 (CPO 10)
helps facility managers operate their chiller plants more efficiently. CPO algorithms are used to operate and sequence plant equipment in an efficient and reliable manner, and to ensure that runtime, starts and stops are equalized across the individual plant components saving energy and improving reliability in the facility. #### Single platform communication - Enhanced, single platform interface of thousands of different hardwired and wireless systems, devices and equipment. - Even more control options and better information access by users, thanks to: - · Field Equipment Controllers redesigning - Terminal Equipment Controller updates and improvements - · Added wireless and network sensors - · Enhanced software and firmware #### Wireless Capabilities - Increased control flexibility, streamlines retrofits and faster download times, thanks to the latest wireless technologies that Metasys[®] incorporates into more devices. - At system's user interface, network automation, field controller or room sensing levels, Wireless Building Technologies from Johnson Controls always result in increased application flexibility and cost effectiveness. #### Security features - Metasys® now incorporates P2000 Security Management System, whose software and network controllers ensure the safety of employees and security of company assets. - P2000 open integration platform, designed for interoperability with a variety of security subsystems including access control, alarm & intrusion detection, video surveillance, visitor management. CE Manufacturer reserves the rights to change specifications without prior notice. # Metasys® Energy Dashboard Metasys® Energy Dashboard is a software solution designed specifically for addressing the needs of energy management in all sort of facilities. It enables dynamic visualization and reporting through an intuitive, rich and easy-to-use interface. Metasys® Energy Dashboard has been conceived using the combination of Johnson Controls global expertise in the fields of building automation, HVACR and energy management projects. The solution is comprises four main modules allowing a customer to acquire only those that better fit its need. These are: Energy, Equipment, Tenant Billing and Tenant Portal. #### Key features include: - Intuitive, flexible user interface fully configurable layout - Sensible reporting options that come as in-built templates – can start actionable analysis from day 0 - Contextualized, modular structure catering to the specific needs of respective users - Caters to energy analysis and reporting, equipment performance monitoring, tenant billing and after hour schedule override needs of the building occupants - Multiple database sources / site can be integrated simultaneously - Web based tool requires no additional hardware, minimal additional software - Multi-lingual support English, Dutch, French, Italian, Japanese, Spanish, simplified Chinese # Johnson Control's eCatalog Johnson Control's eCatalog, also known as the "Virtual Branch", is not only an extensive database of product information but also a point of entry into our organization. Within the eCatalog you are connected to the cloud and hence stay up-to-date on all new product launches, product selection tool releases and updates, technical documents, eLearning modules and much more. You will reach our products in 3-clicks or less through the use of a powerful search engine and a very easy-to-browse navigation menu. You can also view the purchase prices online for many of our products and check the availability of stocked items at a glance. Also, rest assured that access to our network of Sales Representatives and Technical Support teams is directly available for your use. #### **About Johnson Controls** Johnson Controls delivers products, services and solutions that increase energy efficiency and lower operating costs in buildings for more than one million customers. Operating from 500 branch offices in more than 150 countries, the company is a leading provider of equipment, controls and services for heating, ventilating, air-conditioning, refrigeration and security systems. Johnson Controls is involved in more than 500 renewable energy projects including solar, wind and geothermal technologies. Its solutions have reduced carbon dioxide emissions by 13.6 million metric tons and generated savings of \$7.5 billion since 2000. Many of the world's largest companies rely on Johnson Controls to manage 1.5 billion square feet of their commercial real estate. PUBL-7394 - 01.2018